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Combinatorial Optimization Problems

Maximization or minimization problems

Algorithm receives an input

Returns a solution with a cost

As an example, lets take the Load Balancing problem
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Load Balancing problem

Input: machines M , tasks D, sizes s : D → R+

l(i) =
∑

j∈D:a(j)=i

s(j) min
M

max
i=1

l(i)
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Online Problems

Input parts arrive one at a time

Each part is served before next one arrives

No decision can be changed in the future

As an example, lets take the Online Load Balancing (OLB) problem
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Online Load Balancing problem

Itens arrive one at a time

min
M

max
i=1

l(i)

M.C. San Felice (Professor at DC-UFSCar) Designing Competitive Online Algorithms September 6, 2019 5 / 35



Competitive Analysis

Worst case analysis technique

For online algorithm ALG

Using offline optimal solution OPT

ALG is c-competitive if

ALG(I ) ≤ c OPT(I )

for every input I

As an example, lets take a greedy online algorithm for the OLB
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Greedy Online Load Balancing Algorithm

Always choose the machine with minimum load

Algorithm 1: OLB Algorithm

Input: M
For each machine i = 1, . . . ,M set its load l(i) to 0;
i∗ ← 1;
while a new task j arrives do

a(j)← i∗;
l(i∗)← l(i∗) + s(j);
choose machine with minimum load as new i∗;

return a;
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Analyzing Greedy Algorithm

Let i∗ be the machine with maximum load, j be the last task
assigned to i∗, and l(i∗) = l + s(j)

21 M
... ...

i*

s(j)

l

The ideia is to upper bound s(j) and l using OPT
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Auxiliary Results

21 M
... ...

i*

s(j)

l

Lemma 1: OPT ≥ maxj ′∈D s(j ′) ≥ s(j)

Lemma 2: OPT ≥ 1
M

∑
j ′∈D s(j ′) ≥ 1

M

∑j
j ′=1 s(j ′)

= 1
M

∑j−1
j ′=1 s(j ′) + s(j)

M
≥ l + s(j)

M
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Greedy Algorithm is
(
2− 1

M

)
-competitive

Since OPT ≥ s(j) and OPT ≥ l + s(j)
M

, we have

ALG = l + s(j)

≤ OPT− s(j)

M
+ s(j)

≤ OPT +

(
1− 1

M

)
OPT

=

(
2− 1

M

)
OPT

Thus, the greedy algorithm is 2-competitive
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Lower Bound for Greedy Algorithm

List with M(M − 1) size 1 tasks followed by one size M task

... ......

ALG OPT
M

...
1 22

...
M1

... ...

We have ALG = 2M − 1 and OPT = M ,

i.e., ALG
OPT

= 2M−1
M

= 2− 1
M
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Two Interesting Special Cases

Since OPT ≥ s(j) and OPT ≥ l + s(j)
M

, we have

ALG = l + s(j) ≤
(

2− 1

M

)
OPT

Few machines special case: If M = 2 then ALG is 3
2
-competitive

Small items special case: If all items are smaller than αOPT then

ALG = l + s(j) ≤ (1 + α)OPT
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Areas of Interest

Online problems capture uncertainty over time

Common in operations research and computer science:

Resource management: scheduling, packing, load balancing

Dynamic data structures: list access problem

Memory management: paging problem

Sustainability: ski-rental problem

Network design: Steiner tree, facility location

Greedy is a natural approach, since you are necessarily myopic
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Steiner Tree Problem

Input: G = (V ,E ), d : E → R+, terminals D ⊆ V

2 2

2

1

1

1

min
∑
e∈T

d(e) = 3
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Online Steiner Tree Problem

Terminal nodes arrive one at a time

2 2

2

1

1

1

min
∑
e∈T

d(e) = 2 + 2 = 4

We are focusing on the metric completion special case.

Why is this without loss of generality?
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Greedy Online Steiner Tree Algorithm

Connects the current terminal to the closest terminal

Algorithm 2: OST Algorithm

Input: (G , d)
T ← (∅, ∅);
while a new terminal j arrives do

T ← T ∪ {(j ,V (T ))};
return T ;
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Lower Bound for Greedy Algorithm

Lets design a worst case example for the greedy algorithm.
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Lower Bound for Greedy Algorithm

Generalizing this worst case on a lager graph.
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Greedy Algorithm is (2 ln k)-competitive

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Using Lemma 1, we can prove the main result

ALG ≤ 2OPT + OPT +
2

3
OPT + . . .

=
k−1∑
i=1

2OPT

i

= 2OPT
k−1∑
i=1

1

i

= 2OPTHk−1

≤ 2 ln kOPT
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Associate each edge with the vertex it connected to the tree

Take a set with the i “most expensive” vertices
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Consider the optimal tree which connects every terminal
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Two optimal trees form an eulerian graph
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Since we are in the metric completion special case, 2 optimal trees
pay for a cycle connecting these vertices
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Since the cycle has i vertices, it has i edges
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Thus, the average edge cost in this cycle is at most 2OPT
i

The cost of the cheapest edge in the cycle is at most the average
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Proving Auxiliary Result

Lemma 1: The i-th most expensive edge costs at most 2OPT
i

Now we show that, the cheapest edge was an option for the algorithm

Consider both endpoints u and v of the cheapest edge

Suppose v arrived later, at a time u was already in the algorithm tree

Thus, the greedy algorithm bought and edge with cost at most
c(u, v) to connect v

This bought edge is in the set of the i most expensive edges

So, the i-th most expensive edge cost is at most c(u, v) ≤ 2OPT
i
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Lower Bound for Online Steiner Tree
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Bipartite Matching Problem
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Online Bipartite Matching Problem

Greedy Online Bipartite Matching Algorithm

Connects current r.h.s. node with arbitrary l.h.s. neighbor

M.C. San Felice (Professor at DC-UFSCar) Designing Competitive Online Algorithms September 6, 2019 29 / 35



Lower Bound for Online Bipartite Matching

Lets design a worst case example for any deterministic algorithm.
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Analyzing Greedy Algorithm

Relying on Linear Programming

max
∑
e∈E

xe

s.t.
∑

e∈δ(v)

xe ≤ 1,∀v ∈ V

xe ≥ 0,∀e ∈ E

and Duality

min
∑
v∈V

yv

s.t. yu + yv ≥ 1,∀e = (u, v) ∈ E

yu ≥ 0,∀u ∈ V

For each chosen edge e = (u, v), make xe = 1 and yu = yv = 1.
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Auxiliary Results

For each chosen edge e = (u, v), make xe = 1 and yu = yv = 1.

Idea is based on Primal-Dual relation, in which each constraint
corresponds to a variable

Lemma 1:
∑

v∈V yv = 2
∑

e∈E xe , since each edge has 2 vertices and
no vertice has more than an edge in a matching

Lemma 2: The dual is feasible, i.e., yu + yv ≥ 1,∀(u, v) ∈ E

By contradiction, suppose there is an edge e = (u, v) such that
yu + yv = 0

Since both u and v are free, why the algorithm did not chose e when
it arrived?
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Greedy Algorithm is 1
2-competitive

Lemma 1:
∑

v∈V yv = 2
∑

e∈E xe

Lemma 2: The dual is feasible, i.e., yu + yv ≥ 1,∀(u, v) ∈ E

Back to the main result, since our primal is a maximization problem,

by weak duality we have OPT ≤
∑

u∈V yu

Thus,

|M | =
∑
e∈E

xe

=
1

2

∑
u∈V

yv

≥ 1

2
OPT

and the greedy algorithm is 1
2
-competitive
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Ski Rental Problem

Input: time horizon, skis buying price M (renting cost is 1 per day),
list informing when snow melts

1 t
* * * *
1 1 1

*
M

minimize sum of renting days plus M (if we decide to buy skis)

Does a greedy algorithm solve this problem?
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Ski Rental Application and Generalization

Ski rental algorithms are useful to save energy

Help to decide when to turn off parts of a system

Like cores in a processor or computers in a cluster

Generalized into Parking Permit Problem [Meyerson 2005]

Important both to theoretical and practical leasing problems
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