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Combinatorial Optimization Problems

Maximization or minimization problems in which, for each
input there is a set of feasible solutions and, for each solution
there is a cost associated with it.

In this presentation we will focus on the Unconstrained
Submodular Maximization problem (USM).

This is one of the most basic submodular optimization
problems, that captures some well known problems as
Max-Cut and Max-DiCut.
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Unconstrained Submodular Maximization

It is a maximization problem in which we are given a
non-negative submodular function f : 2N → R+.

The objective is to find a subset S ⊆ N maximizing f (S).

Problems with submodular objective functions capture the
principle of economy of scale, and are commonly used in
economics and algorithmic game theory.
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Submodular Functions

A function is submodular if, for every A ⊆ B ⊆ N and u ∈ N ,
we have:

f (A ∪ {u})− f (A) ≥ f (B ∪ {u})− f (B).

An equivalent definition is, for any subsets A and B :

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

As an example, consider the cardinality of a cut in a graph.
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Paper Results

They design a linear time deterministic (1/3)-approximation
algorithm for USM, using a greedy based approach.

Then, modifying the deterministic algorithm using randomness,
they design a (1/2)-approximation algorithm for USM.

This result is tight, because there is an upper bound of
(1/2 + ε) to the approximation ratio of any algorithm for
USM [2].
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Techniques

Lets show two straightforward greedy approachs.

First, define f̄ (S) = f (N \ S).

Once f (S) is submodular so it is f̄ (S).

f̄ (A) + f̄ (B) = f (N \ A) + f (N \ B)

≥ f ((N \ A) ∪ (N \ B)) + f ((N \ A) ∩ (N \ B))

= f (N \ (A ∩ B)) + f (N \ (A ∪ B))

= f̄ (A ∩ B) + f̄ (A ∪ B).
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Techniques (cont.)

Now, lets define a greedy algorithm that starts from an empty
solution and iteratively adds elements to it.

This algorithm decides to add an element by checking if the
submodular function increases when it is added.

It works both for f and f̄ , and for the later it corresponds to
start with N and to iteratively remove elements from it.

Although they seem reasonable, neither gives a constant
approximation ratio.
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Deterministic Algorithm

Algorithm 1: DeterministicUSM.

Data: f , N
X0 ← ∅; Y0 ← N ;
for i = 1 to |N | do

ai ← f (Xi−1 ∪ {ui})− f (Xi−1);
bi ← f (Yi−1 \ {ui})− f (Yi−1);
if ai ≥ bi then

Xi ← Xi−1 ∪ {ui}; Yi ← Yi−1;
else ai < bi

Xi ← Xi−1; Yi ← Yi−1 \ {ui};
end

end
return Xn (or equivalently Yn).
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Analysis of the DeterministicUSM Algorithm

Lemma (1)

For every 1 ≤ i ≤ |N | we have that ai + bi ≥ 0.

Demonstração.

By submodularity, we have:

f (Xi−1 ∪ {ui})− f (Xi−1) ≥ f (Yi−1)− f (Yi−1 \ {ui}).

So:

ai + bi = f (Xi−1 ∪ {ui})− f (Xi−1) + f (Yi−1 \ {ui})− f (Yi−1)

= (f (Xi−1 ∪ {ui})− f (Xi−1))− (f (Yi−1)− f (Yi−1 \ {ui}))

≥ 0.
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Analysis of the DeterministicUSM (cont.)

Lets define OPTi = (OPT ∪ Xi) ∩ Yi .

Realize that OPT0 = OPT and OPT|N| = X|N| = Y|N|.

Lemma (2)

For every 1 ≤ i ≤ |N | we have:

f (OPTi−1)− f (OPTi) ≤ f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1).
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Analysis of the DeterministicUSM (cont.)

Theorem

The DeterministicUSM algorithm is a linear time
(1/3)-approximation for USM.

Demonstração.

Using lemma 2 we have:

|N|∑
i=1

(f (OPTi−1)− f (OPTi)) ≤
|N|∑
i=1

(f (Xi)− f (Xi−1))

+

|N|∑
i=1

(f (Yi)− f (Yi−1)).

LOCo/IC/UNICAMP – February 28th, 2014 – USM – M.C.S. Felice 11/16



Analysis of the DeterministicUSM (cont.)

Theorem

The DeterministicUSM algorithm is a linear time
(1/3)-approximation for USM.

Demonstração.

Using lemma 2 we have:

|N|∑
i=1

(f (OPTi−1)− f (OPTi)) ≤
|N|∑
i=1

(f (Xi)− f (Xi−1))

+

|N|∑
i=1

(f (Yi)− f (Yi−1)).

LOCo/IC/UNICAMP – February 28th, 2014 – USM – M.C.S. Felice 11/16



Analysis of the DeterministicUSM (cont.)

Proving theorem (cont).

Demonstração.

Once the previous sums are telescopic we have:

f (OPT0)− f (OPT|N|) ≤ f (X|N|)− f (X0) + f (Y|N|)− f (Y0)

≤ f (X|N|) + f (Y|N|).

So,
f (OPT ) ≤ 3f (X|N|).
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Analysis of the DeterministicUSM (cont.)

Proving lemma 2.

Demonstração.

Assume that ai ≥ bi (the other case is similar).

In this case, OPTi = (OPT ∪ Xi) ∩ Yi = OPTi−1 ∪ {ui} and
Yi = Yi−1.

So, we have to prove that:

f (OPTi−1)− f (OPTi−1 ∪ {ui}) ≤ f (Xi)− f (Xi−1) = ai .
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Analysis of the DeterministicUSM (cont.)

Proving lemma 2 (cont).

Demonstração.

Now we consider two cases.

If ui ∈ OPT then f (OPTi−1)− f (OPTi−1) = 0 and ai ≥ 0.

If ui /∈ OPT then ui /∈ OPTi−1 and

f (OPTi−1)− f (OPTi−1 ∪ {ui}) ≤ f (Yi−1 \ {ui})− f (Yi−1)

= bi ≤ ai .
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