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The Online Prize-Collecting Facility Location Problem

Combinatorial Optimization Problems

Problems in which an objective function needs to be minimized or
maximized.

Minimization problems in which we are interested:

Facility Location problem,

Prize-Collecting Facility Location problem.

These problems are NP-hard and constant factor approximation
algorithms are known for them.
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The Online Prize-Collecting Facility Location Problem

Facility Location Problem
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∑
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d(j ,F a)

Total cost = 2 + 3 = 5.
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The Online Prize-Collecting Facility Location Problem

Online Computation

Parts of the input are revealed one at a time.

Each part must be served before the next one arrives.

No decision can be changed in the future.
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The Online Prize-Collecting Facility Location Problem

Competitive Analysis

Worst case technique used to analyze online algorithms.

An online algorithm ALG is c-competitive if:

ALG(I ) ≤ c ·OPT(I ) + κ,

for every input I and some constant κ.
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The Online Prize-Collecting Facility Location Problem

Online Problems

Minimization problems in which we are interested:

Online Facility Location (OFL),

Online Prize-Collecting Facility Location (OPFL).
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The Online Prize-Collecting Facility Location Problem

Online Facility Location Results

The OFL has competitive ratio Θ
(

log n
log log n

)
[Fotakis 2008].

There are randomized and deterministic O(log n)-competitive
algorithms known for it [Meyerson 2001, Fotakis 2007].

[Nagarajan and Williamson 2013] give a dual-fitting analysis for the
algorithm by [Fotakis 2007].
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The Online Prize-Collecting Facility Location Problem

Online Facility Location LP Formulation

Linear programming relaxation

min
∑

i∈F f (i)yi +
∑

j∈D
∑

i∈F d(j , i)xji

s.t. xji ≤ yi for j ∈ D and i ∈ F ,∑
i∈F xji ≥ 1 for j ∈ D,

yi ≥ 0, xji ≥ 0 for j ∈ D and i ∈ F ,

and its dual

max
∑

j∈D αj

s.t.
∑

j∈D(αj − d(j , i))+ ≤ f (i) for i ∈ F ,

αj ≥ 0 for j ∈ D.
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The Online Prize-Collecting Facility Location Problem

Online Facility Location Algorithm

Algorithm 1: OFL Algorithm.

Input: (G , d , f , F )
F a ← ∅; D ← ∅;
while a new client j ′ arrives do

increase αj ′ until one of the following happens:
(a) αj ′ = d(j ′, i) for some i ∈ F a; /* connect only */
(b) f (i) = (αj ′ − d(j ′, i)) +

∑
j∈D(d(j ,F a)− d(j , i))+ for some

i ∈ F \ F a; /* open and connect */
F a ← F a ∪ {i}; D ← D ∪ {j ′}; a(j ′)← i ;

end
return (F a, a);
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The Online Prize-Collecting Facility Location Problem

OPFL Results

Our contribution: we proposed the problem and showed a primal-dual
(6 log n)-competitive algorithm for it, by extending the algorithm
from [Fotakis 2007, Nagarajan and Williamson 2013].

Since the OPFL is a generalization of the OFL, the lower bound of

Ω
(

log n
log log n

)
applies to it.
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The Online Prize-Collecting Facility Location Problem

OPFL LP Formulation

Linear programming relaxation

min
∑

i∈F f (i)yi +
∑

j∈D
∑

i∈F d(j , i)xji +
∑

j∈D p(j)zj

s.t. xji ≤ yi for j ∈ D and i ∈ F ,∑
i∈F xji + zj ≥ 1 for j ∈ D,

yi ≥ 0, xji ≥ 0, zj ≥ 0 for j ∈ D and i ∈ F ,

and its dual

max
∑

j∈D αj

s.t.
∑

j∈D(αj − d(j , i))+ ≤ f (i) for i ∈ F ,

αj ≤ p(j) for j ∈ D,

αj ≥ 0 for j ∈ D.
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The Online Prize-Collecting Facility Location Problem

OPFL Algorithm
Algorithm 2: OPFL Algorithm.

Input: (G , d , f , p, F )
D ← ∅; F a ← ∅;
while a new client j ′ arrives do

increase αj ′ until one of the following happens:
(a) αj ′ = d(j ′, i) for some i ∈ F a; /* connect only */
(b) f (i) = (αj ′ − d(j ′, i)) +

∑
j∈D(min{d(j ,F a), p(j)} −

d(j , i))+ for some i ∈ F \ F a; /* open and connect */
(c) αj ′ = p(j ′); /* pay the penalty */
(in this case i is choose to be null, i.e., {i} = ∅)
F a ← F a ∪ {i}; D ← D ∪ {j ′}; a(j ′)← i ;

end
return (F a, a);
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The Online Prize-Collecting Facility Location Problem

Analysis

Towards the O(log n) competitive ratio
1 Resulting assignment is feasible.

X
2 Total cost of the assignment is bounded by 2 ·

∑
j αj .

3

{
αj

3Hn

}
j

is feasible to the dual problem, so
∑

j

αj

3Hn
≤ OPT.
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The Online Prize-Collecting Facility Location Problem

Analysis

2 Total cost of the assignment is bounded by 2 ·
∑

j αj .

X

total cost for opening facilities ≤
∑

j αj .

total cost for connections and penalties ≤
∑

j αj .
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∑
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3

{
αj

3Hn

}
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is feasible to the dual problem, so
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j
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Analysis: (i)
∑

j∈Dc

( αj

3Hn
− d(j , i)

)+ ≤ fi
2 for each i ∈ F

X

Techniques in [NW, 2013]
For each i ∈ F ,

f (i) ≥ (α[k] − d(j[k], i)) +
∑

j∈Dc
[k−1]

(
min{d(j ,F a

[k]), p(j)} − d(j , i)
)+

(j connected ⇒ d(j ,F a
[k]

) is smaller)

= (α[k] − d(j[k], i)) +
∑

j∈Dc
[k−1]

(
d(j ,F a

[k])− d(j , i)
)+

(triangle inequality)

≥ (α[k] − d(j[k], i)) +
∑

j∈Dc
[k−1]

(
α[k] − d(j[k], i)− 2d(j , i)

)+

⇒ f (i) ≥ (1 + (k − 1)︸ ︷︷ ︸
=|Dc

[k−1]
|

) · (α[k] − d(j[k], i))− 2
∑

j∈Dc
[k−1]

d(j , i)
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Analysis: (ii)
∑

j∈Dp

( αj

3Hn
− d(j , i)

)+ ≤ fi
2 for each i ∈ F

Same trick for Dp?
For each i ∈ F ,

f (i) ≥ (α[k] − d(j[k], i)) +
( ∑
j∈Dp

[k−1]

min{d(j ,F a
[k]), p(j)︸︷︷︸

=αj

} − d(j , i)
)+

(j not connected 6⇒ d(j ,F a
[k]

) is smaller) D̄p
[k−1]

:= {j ∈ Dp
[k−1]

: αj ≥ d(j ,F a
[k]

)}

≥ (α[k] − d(j[k], i)) +
∑

j∈D̄p
[k−1]

(
d(j ,F a

[k])− d(j , i)
)+

(triangle inequality)

≥ (α[k] − d(j[k], i) +
∑

j∈D̄p
[k−1]

(
α[k] − d(j[k], i)− 2d(j , i)

)
⇒ f (i) ≥ (1 + |D̄p

[k−1]|︸ ︷︷ ︸
could <(k−1)

) · (α[k] − d(j[k], i))− 2
∑

j∈Dc
[k−1]

d(j , i)
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Analysis: (ii)
∑

j∈Dp

( αj

3Hn
− d(j , i)

)+ ≤ fi
2 for each i ∈ F

X

How to fix?

Goal: harmonic series as coefficients, e.g.

f (i) ≥ k · (αk − d(jk , i)) (∗)

for some ordering {jk} over Dp. Observe: For larger αk − d(jk , i)
value, smaller coefficient k should be assigned.

New argument: For each i ∈ F , order αk ∈ Dp in nonincreasing
order of αk − d(jk , i) and show that inequality (∗) holds.
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Analysis

Towards O(log n) competitive ratio
1 Resulting assignment is feasible. X
2 Total cost of the assignment is bounded by 2 ·

∑
j αj . X

3

{
αj

3Hn

}
j

is feasible to the dual problem, so
∑

j

αj

3Hn
≤ OPT. X

Conclusion
Our algorithm has (6 log n)-competitive ratio.
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Future Research:

Other variants of Facility Location, like:

Online Robust Facility Location,

Online Multicommodity Facility Location,

Online Prize-Collecting Facility Leasing.
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