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Combinatorial Optimization Problems

Maximization or minimization problems

Algorithm receives an input

Returns a solution with a cost

As an example, lets take the Steiner Tree Problem
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Steiner Tree Problem

Input: G = (V ,E ), d : E → R+, terminals D ⊆ V

min
∑
e∈T

d(e)

Total cost = 3
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Online Problems

Input parts arrive one at a time

Each part is served before next one arrives

No decision can be changed in the future

As an example, lets take the Online Steiner Tree problem
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Online Steiner Tree Problem

Terminal nodes arrive one at a time
No edge used can be removed in the future

min
∑
e∈T

d(e)

Total cost = 2 + 2 = 4
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Competitive Analysis

Worst case analysis technique

For online algorithm ALG

Using offline optimal solution OPT

ALG is c-competitive if

ALG(I ) ≤ c OPT(I )

for every input I

As an example, lets take a greedy online algorithm for the Online
Steiner Tree problem
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Greedy Online Steiner Tree Algorithm

Algorithm 1: OST Algorithm

Input: (G , d)
T ← (∅, ∅);
while a new terminal j arrives do

T ← T ∪ {path(j ,V (T ))};
return T ;

This algorithm is O(log n)-competitive [Imase and Waxman 1991]

A Ω(log n) lower bound is known [Imase and Waxman 1991]
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Areas of Interest

Online problems capture uncertainty over time

Common in operations research and computer science:

Resource management: scheduling, packing and load balancing
problems

Dynamic data structures: list access problem

Memory management: paging problem

Sustainability: ski-rental problem

Network design: Steiner tree and facility location problems
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Online Load Balancing problem

Input: machines M , tasks D, sizes s : D → R+

l(i) =
∑

j∈D:a(j)=i

s(j) min
M

max
i=1

l(i)
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Greedy Online Load Balancing Algorithm

Algorithm 2: OLB Algorithm

Input: M
For each machine i = 1, . . . ,M set its load l(i) to 0;
i∗ ← 1;
while a new task j arrives do

a(j)← i∗;
l(i∗)← l(i∗) + s(j);
choose machine with minimum load as new i∗;

return a;
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OLB Algorithm is
(
2− 1

M

)
-competitive

Let i∗ be the machine with maximum load, j be the last task
assigned to i∗, and l(i∗) = l + s(j)

21 M
... ...

i*

s(j)

l

We have OPT ≥ s(j) and OPT ≥ l + s(j)
M
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OLB Algorithm is
(
2− 1

M

)
-competitive

Since OPT ≥ s(j) and OPT ≥ l + s(j)
M

, we have

ALG = l + s(j)

≤ OPT− s(j)

M
+ s(j)

≤ OPT +

(
1− 1

M

)
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Lower Bound for OLB Algorithm

List with M(M − 1) size 1 tasks followed by one size M task

We have ALG = 2M − 1 and OPT = M
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Ski Rental Problem

Input: time horizon, skis buying price M (renting cost is 1 per day),
list informing when snow melts

minimize sum of renting days plus M (if we decide to buy skis)

Does a greedy algorithm solve this problem?
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Ski Rental Application and Generalization

Ski rental algorithms are useful to save energy

Help to decide when to turn off parts of a system

Like cores in a processor or computers in a cluster

Generalized into Parking Permit Problem [Meyerson 2005]

Important both to theoretical and practical leasing problems
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Ski Rental Algorithm

Algorithm 3: Intuitive SR Algorithm

Input: M
Set day j and total renting cost r to 0;
while a new snow day happens do

if r + 1 < M then
Rent skis at day j and r ← r + 1;

else
Buy skis if still don’t have them;

j ← j + 1;

This algorithm is 2-competitive. Why?
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Ski Rental LP Formulations

Linear programming relaxation

min Mx +
∑n

j=1 yj

s.t. x + yj ≥ 1 for j = 1, . . . , n

x ≥ 0, yj ≥ 0 for j = 1, . . . , n

and its dual

max
∑n

j=1 αj

s.t.
∑n

j=1 αj ≤ M

αj ≤ 1 for j = 1, . . . , n

αj ≥ 0 for j = 1, . . . , n
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Primal-Dual Ski Rental Algorithm

Algorithm 4: Primal-Dual SR Algorithm

Input: M
Set day j ′ to 0;
while a new snow day happens do

increase αj ′ until one of the following happens:
(a) αj ′ = 1; /* rent skis setting yj ′ = 1 */

(b) M = αj ′ +
∑j ′−1

j=1 αj ; /* buy skis setting x = 1 */

j ′ ← j ′ + 1;

Is it similar to the previous algorithm?
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Primal-Dual SR Algorithm is 2-Competitive

Cost of any dual solution is at most OPT

So

ALG = Mx +
n∑

j=1

yj

≤
n∑

j=1

αj +
n∑

j=1

αj

≤ 2OPT
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Online Facility Location Problem

Input: G = (V ,E ), d : E → R+, f : V → R+, clients D ⊆ V

min
∑
i∈F a

f (i) +
∑
j∈D

d(j , a(j))

Total cost = 2 + 2 + 2 = 6.
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Online Facility Location LP Formulation

Linear programming relaxation

min
∑

i∈F f (i)yi +
∑

j∈D
∑

i∈F d(j , i)xji

s.t. xji ≤ yi for j ∈ D and i ∈ F∑
i∈F xji ≥ 1 for j ∈ D

yi ≥ 0, xji ≥ 0 for j ∈ D and i ∈ F

and its dual

max
∑

j∈D αj

s.t.
∑

j∈D(αj − d(j , i))+ ≤ f (i) for i ∈ F

αj ≥ 0 for j ∈ D
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Online Facility Location Algorithm

Algorithm 5: OFL Algorithm

Input: (G , d , f , F )
F a ← ∅; D ← ∅;
while a new client j ′ arrives do

increase αj ′ until one of the following happens:
(a) αj ′ = d(j ′, i) for some i ∈ F a; /* connect only */
(b) f (i) = (αj ′ − d(j ′, i)) +

∑
j∈D(d(j ,F a)− d(j , i))+ for some

i ∈ F \ F a; /* open and connect */
F a ← F a ∪ {i}; D ← D ∪ {j ′}; a(j ′)← i ;

return (F a, a);
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Online Facility Location Results

The OFL has competitive ratio Θ
(

log n
log log n

)
[Fotakis 2008]

There are randomized and deterministic O(log n)-competitive
algorithms known for it [Meyerson 2001, Fotakis 2007]

[Nagarajan and Williamson 2013] give a dual-fitting analysis for the
algorithm by [Fotakis 2007]
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