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Online Combinatorial Optimization Problems

Combinatorial Optimization Problems

Maximization or minimization problems in which, for each input there
is a set of feasible solutions and, for each solution there is a cost
associated with it.

As an example, lets take the Steiner Tree Problem.
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Online Combinatorial Optimization Problems

Steiner Tree Problem
Minimization problem whose input is a graph with costs on the
edges, a set of terminal nodes and a set of Steiner nodes. A feasible
solution is a tree that connects all terminal nodes, and its cost is the
sum of the edge costs in the tree.
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Online Combinatorial Optimization Problems

Online Problems

Problems in which the parts of the input arrive one at a time and
each part need to be served before the next one arrives. Also, no
decision made to serve a part may be changed in the future.

As an example, lets take the Online Steiner Tree problem.
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Online Combinatorial Optimization Problems

Online Steiner Tree Problem
This problem is defined similarly to the Steiner Tree problem, except
that the terminal nodes arrive one at a time. At all times the
terminals must be connected by a tree and no edge used may be
removed in the future.
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Online Combinatorial Optimization Problems

Competitive Analysis

Worst case technique used to analyse online algorithms.

We say that an online algorithm ALG is c-competitive if, for every
input I , we have

ALG(I ) ≤ c OPT(I ) .

As an example, lets take a greedy online algorithm for the Online
Steiner Tree problem.
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Online Combinatorial Optimization Problems

Greedy Online Steiner Tree Algorithm

Algorithm 1: OST Algorithm.

Input: (G , d)
T ← (∅, ∅);
while a new terminal j arrives do

T ← T ∪ {path(j ,V (T ))};
end
return T ;

The OST Algorithm is O(log n)-competitive. Also, it is known a
Ω(log n) lower bound to the competitive ratio of any algorithm for
this problem [Imase and Waxman 1991].

Mário César San Felice (IME-USP) April 29, 2016 7 / 24



Online Combinatorial Optimization Problems

Greedy Online Steiner Tree Algorithm

Algorithm 1: OST Algorithm.

Input: (G , d)
T ← (∅, ∅);
while a new terminal j arrives do

T ← T ∪ {path(j ,V (T ))};
end
return T ;

The OST Algorithm is O(log n)-competitive. Also, it is known a
Ω(log n) lower bound to the competitive ratio of any algorithm for
this problem [Imase and Waxman 1991].

Mário César San Felice (IME-USP) April 29, 2016 7 / 24



Online Combinatorial Optimization Problems

Areas of Interest

Online problems allow us to capture the uncertainty related to input
data that arrives over time. This characteristic is common in several
problems from operations research and computer science:

Resource management: scheduling, packing and load balancing
problems.

Dynamic data structures: list access problem.

Memory management: paging problem.

Sustainability: ski-rental and parking permit problems.

Network design: online versions of Steiner tree and facility
location problems.
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Online Combinatorial Optimization Problems

Online Load Balancing problem
Minimization problem whose input is a number of machines and a list
of tasks with sizes. A feasible solution is an assignment of each task
to a machine, and its cost is the maximum load between the
machines.
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Online Combinatorial Optimization Problems

Greed Online Load Balancing Algorithm

Algorithm 2: OLB Algorithm.

Input: M
For each machine i = 1, . . . ,M set its load l(i) to 0;
i∗ ← 1;
while a new task j arrives do

a(j)← i∗;
l(i∗)← l(i∗) + s(j);
choose machine with minimum load as new i∗;

end
return a;
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Online Combinatorial Optimization Problems

OLB Algorithm is
(
2− 1

M

)
-competitive

Let i∗ be the machine with the maximum load, j be the last task
assigned to i∗, and l(i∗) = l + s(j).

21 M
... ...

i*

s(j)

l

We have OPT ≥ s(j) and OPT ≥ l + s(j)
M

.
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Online Combinatorial Optimization Problems

OLB Algorithm is
(
2− 1

M

)
-competitive

Since OPT ≥ s(j) and OPT ≥ l + s(j)
M

, we have

ALG = l + s(j)

≤ OPT− s(j)

M
+ s(j)

≤ OPT +

(
1− 1

M

)
OPT
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2− 1

M

)
OPT .

Mário César San Felice (IME-USP) April 29, 2016 12 / 24



Online Combinatorial Optimization Problems

OLB Algorithm is
(
2− 1

M

)
-competitive

Since OPT ≥ s(j) and OPT ≥ l + s(j)
M

, we have

ALG = l + s(j)

≤ OPT− s(j)

M
+ s(j)

≤ OPT +

(
1− 1

M

)
OPT

=

(
2− 1

M

)
OPT .

Mário César San Felice (IME-USP) April 29, 2016 12 / 24



Online Combinatorial Optimization Problems

Lower Bound for OLB Algorithm
Consider a list with M(M − 1) tasks of size 1 followed by a task of
size M .

1 M
... ...

M 1
ALG OPT

We have ALG = 2M − 1 and OPT = M .
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Online Combinatorial Optimization Problems

Ski Rental Problem

Minimization problem whose input is the price M to buy skies and a
list informing when the snow melt. A feasible solution is a list
informing when we rent or buy skies, and its cost is 1 for each renting
day plus M if you buy.
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Online Combinatorial Optimization Problems

Ski Rental Application and Generalization

Ski rental algorithms may be used to save energy by deciding when to
turn off parts of a system, like cores in a processor or computers in a
cluster.

Also, it may be generalized to the Parking Permit Problem [Meyerson
2005].
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Online Combinatorial Optimization Problems

Ski Rental Algorithm
Algorithm 3: Intuitive SR Algorithm.

Input: M
Set day j and total renting cost r to 0;
while a new snow day happens do

if r + 1 < M then
Rent skies at day j and r ← r + 1;

else
Buy skies if still don’t have them;

end
j ← j + 1;

end

This algorithm is 2-competitive. Why?
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Online Combinatorial Optimization Problems

Ski Rental LP Formulations

Linear programming relaxation

min Mx +
∑n

j=1 yj

s.t. x + yj ≥ 1 for j = 1, . . . , n,

x ≥ 0, yj ≥ 0 for j = 1, . . . , n,

and its dual

max
∑n

j=1 αj

s.t.
∑n

j=1 αj ≤ M for j = 1, . . . , n,

αj ≤ 1 for j = 1, . . . , n.

αj ≥ 0 for j = 1, . . . , n.
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Online Combinatorial Optimization Problems

Primal-Dual Ski Rental Algorithm

Algorithm 4: Primal-Dual SR Algorithm.

Input: M
Set day j ′ to 0;
while a new snow day happens do

increase αj ′ until one of the following happens:
(a) αj ′ = 1; /* rent skies setting yj = 1 */

(b) M = αj ′ +
∑j ′−1

j=1 αj ; /* buy skies setting x = 1 */

j ′ ← j ′ + 1;

end

Does it remember the previous algorithm?
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Online Combinatorial Optimization Problems

Primal-Dual SR Algorithm is 2-Competitive

Recalling that the cost of any dual feasible solution is at most the
cost of OPT, we have

ALG = Mx +
n∑

j=1

yj

≤
n∑

j=1

αj +
n∑

j=1

αj

≤ 2OPT .
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Online Combinatorial Optimization Problems

Online Facility Location Problem

2 2

2

1

1

1

f=2

min
∑
i∈F a

f (i) +
∑
j∈D

d(j , a(j))

Total cost = 2 + 2 + 2 = 6.
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Online Combinatorial Optimization Problems

Online Facility Location LP Formulation

Linear programming relaxation

min
∑

i∈F f (i)yi +
∑

j∈D
∑

i∈F d(j , i)xji

s.t. xji ≤ yi for j ∈ D and i ∈ F ,∑
i∈F xji ≥ 1 for j ∈ D,

yi ≥ 0, xji ≥ 0 for j ∈ D and i ∈ F ,

and its dual

max
∑

j∈D αj

s.t.
∑

j∈D(αj − d(j , i))+ ≤ f (i) for i ∈ F ,

αj ≥ 0 for j ∈ D.
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Online Facility Location Algorithm

Algorithm 5: OFL Algorithm.

Input: (G , d , f , F )
F a ← ∅; D ← ∅;
while a new client j ′ arrives do

increase αj ′ until one of the following happens:
(a) αj ′ = d(j ′, i) for some i ∈ F a; /* connect only */
(b) f (i) = (αj ′ − d(j ′, i)) +

∑
j∈D(d(j ,F a)− d(j , i))+ for some

i ∈ F \ F a; /* open and connect */
F a ← F a ∪ {i}; D ← D ∪ {j ′}; a(j ′)← i ;

end
return (F a, a);
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Online Facility Location Results

The OFL has competitive ratio Θ
(

log n
log log n

)
[Fotakis 2008].

There are randomized and deterministic O(log n)-competitive
algorithms known for it [Meyerson 2001, Fotakis 2007].

[Nagarajan and Williamson 2013] give a dual-fitting analysis for the
algorithm by [Fotakis 2007].
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