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Main Goals

Define and present a competitive algorithm for the
Online Multicommodity Connected Facility Location problem.

But first . . .
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Combinatorial Optimization Problems

Maximization or minimization problems.

Algorithm receives an input.

Returns a solution with a cost.

Some minimization problems are:

Facility Location problem,

Steiner Tree problem,

Connected Facility Location problem.

These problems are NP-hard with constant factor approximation
algorithms known.
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The Facility Location Problem

min
∑
i∈F

f (i) +
∑
j∈D

d(j ,F )

Total cost = 2 + 3 = 5
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The Steiner Tree Problem

min
∑
e∈T

d(e)

Total cost = 3
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The Connected Facility Location Problem

Combination of the Facility Location and the Steiner Tree problems
through the rent-or-buy model.

Motivation is to build a two-layer network.

Algorithm receives a set of clients and connects each client to an
opened facility.

Also, it builds an expensive tree which connects all facilities.
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Connected Facility Location Problem

min
∑
i∈F

f (i) +
∑
j∈D

d(j ,F ) + M
∑
e∈T

d(e)

Total cost = 2 + 4 + 6 = 12
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Multicommodity Connected Facility Location

Generalization of the Connected Facility Location problem.

Proposed by Fabrizio Grandoni and Thomas Rothvoß, who presented
a constant approximation for it.

Algorithm receives a set of pairs to connect.

It may rent or buy edges and open facilities to connect each pair.

The path connecting a pair may only change between rented and
bought edges at an opened facility.
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Online Problems and Competitive Analysis

Parts of the input are revealed one at a time.

Each part is served before the next one arrives.

No decision made may be changed in the future.

An online algorithm ALG is c-competitive if:

ALG(I ) ≤ c OPT(I ) ,

for every input I .

Competitive ratio is similar to approximation ratio.
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Online Multicommodity CFL Problem

Online version of the Multicommodity Connected Facility Location
problem.

Pairs arrive one at a time and their nodes must be immediately
connected to each other.

Opened facilities and rented or bought edges may not be removed in
the future.
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Online Multicommodity CFL Algorithm

We present a sample-and-augment algorithm inspired on the
algorithm for MCFL due to Grandoni and Rothvoß.

Sample-and-Augment is a technique, due to Gupta et al., to design
randomized algorithms for rent-or-buy problems.

We highlight that the Online Multicommodity Connected Facility
Location problem is not a typical rent-or-buy problem.

Because the constraints on rented edges are distinct from those on
bought edges.

However, it still has a cost scaling factor which justify the use of this
technique.

San Felice, Fernandes and Lintzmayer OMCFL October 20th, 2017 13 / 30



Algorithm 1: Draft of Algorithm for the OMCFL problem.

Input: (G , d , f , M)
while a new pair p = (s, t) arrives do

decide if and which facilities to open when serving s and t;
� algorithm for the Online Prize-Collecting Facility Location
mark p with probability 1

M
; � balance cost scaling factor

if p is marked then
open facilities to which s and t are assigned and update F a;
choose edges to connect these facilities and update E b;
� algorithm for the Online Steiner Forest
add zero cost edges connecting opened facilities which are in
the same bought component;

consider an (s, t)-shortest path in G ;
let E r

p be the non zero cost edges of this path;

return (F a,E b, (E r
p)p∈P);



Online Prize-Collecting Facility Location Problem

min
∑
i∈F a

f (i) +
∑
j 6∈Dφ

d(j , φ(j)) +
∑
j∈Dφ

π(j)

Total cost = 2 + 2 + 2 = 6
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Online Prize-Collecting Facility Location Problem

Elmachtoub and Levi, and San Felice et al. independently presented
O(log n)-competitive algorithms for the OPFL.

Since the OPFL is a generalization of the Online Facility Location

problem, the Ω
(

log n
log log n

)
lower bound due to Fotakis applies to it.
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Online Steiner Forest Problem

min
∑
e∈T

d(e)

Total cost = 2 + 5 + 1 = 8
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Online Steiner Forest Problem

Berman and Coulston presented a deterministic O(log n)-competitive
algorithm for the OSF.

Also, a Ω(log n) lower bound to the OST due to Imase and Waxman
applies to the OSF.
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Algorithm 2: Algorithm for the OMCFL problem.

Input: (G , d , f , M)
while a new pair p = (s, t) arrives do

πp ← dist(G , d ′, s, t)/2; � decide if and which facilities
send (s, πp) and (t, πp) to ALGOPFL obtaining φ(s) and φ(t);
if φ(s) 6= null and φ(t) 6= null then

mark p with probability 1/M ; � balance cost scaling factor

if p is marked then
send (φ(s), φ(t)) to ALGOSF obtaining an edge set E b

p ;

F a ← F a ∪ {φ(s), φ(t)}; E b ← E b ∪ E b
p ;

for x , y ∈ F a in the same component of G [E b] do

d ′(x , y)← 0; E ′ ← E ′ ∪ {xy};
consider an (s, t)-shortest path in G with costs d ′;
let E r

p be the edges of this path except for those in E ′;

return (F a,E b, (E r
p)p∈P);



Analysis of the OMCFL Algorithm

Cost of Algorithm for OMCFL is divided between facilities opening
cost (O), edges buying cost (B) and edges renting cost (R):

ALGOMCFL(P) = O(P) + B(P) + R(P) .

And the edges renting cost (R) is divided according to the pairs in
Pπ, Pm and Pu:

R(P) = Rπ(P) + Rm(P) + Ru(P) .

The cost of the offline optimal solution is also divided in this way:

OPTMCFL(P) = O∗(P) + B∗(P) + R∗(P) .
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First an Auxiliary Lemma

Lemma

OPTPFL(D) ≤ OPTMCFL(P).

ALGOPFL(D) ≤ O(log n)OPTPFL(P) ≤ O(log n)OPTMCFL(P) .
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Some Simple Lemmas

Cost of Algorithm for OPFL is divided between facilities opening
cost (O ′), clients penalty cost (Π) and clients connection cost (C ′):

ALGOPFL(D) = O ′(D) + Π(D) + C ′(D) .

Lemma (Facility Opening Cost)

O(P) ≤ O ′(D). ALGOMCFL opens a subset of ALGOPFL facilities.

Lemma (Close Pairs Renting Cost)

Rπ(P) ≤ 2Π(D). At least one node of each pair paid penalty.

Lemma (Marked Pairs Renting Cost)

Rm(P) ≤ C ′(D). For every marked pair, its renting edges correspond
to its nodes connections.
San Felice, Fernandes and Lintzmayer OMCFL October 20th, 2017 22 / 30



Central Lemma

Lemma (Buying Cost)

E[B(P)] = O(log2 n) OPTMCFL(P).

B(P) ≤ M ALGOSF(Q) = M O(log n) OPTSF(Q) .

E[OPTSF(Q)] ≤ (B∗(P) + R∗(P) + C ′(D)) /M .

E[B(P)] = O(log n) (B∗(P) + R∗(P) + C ′(D))

= O(log n) (B∗(P) + R∗(P) + ALGOPFL(D))

= O(log n) (OPTMCFL(P) + O(log n)OPTPFL(D))

= O(log2 n) OPTMCFL(P) .
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Final Lemma

Lemma (Unmarked Pairs Renting Cost)

E[Ru(P)] = O(log2 n) OPTMCFL(P).

Sp = E u
p if p 6∈ Pm and Zp = E b

p if p ∈ Pm.

E
[∑

e∈Eu
p
d(e) | d(Sp), d(Zp)

]
=

M − 1

M
d(Sp) ≤ d(Sp) ,

E
[∑

e∈Eb
p
Md(e) | d(Sp), d(Zp)

]
=

1

M
M d(Zp) = d(Zp) .

E
[∑

e∈Eu
p
d(e)

]
≤ E

[∑
e∈Eb

p
Md(e)

]
+ d(s, φ(s)) + d(t, φ(t)) .

E[Ru(P)] ≤ E[B(P)] + C ′(D) = O(log2 n) OPTMCFL(P) .
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Main Result

Theorem

E[ALGOMCFL(P)] = O(log2 n) OPTMCFL(P).

E[ALGOMCFL(P)] = E[O(P)] + E[B(P)] + E[R(P)]

= E[O(P)] + E[B(P)]

+ E[Rπ(P) + Rm(P) + Ru(P)]

≤ O ′(D) + O(log2 n) OPTMCFL(P)

+ 2Π(D) + C ′(D) + O(log2 n) OPTMCFL(P)

= O(log2 n) OPTMCFL(P) .
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Final Remarks

With a small change in the algorithm we are able to achieve a
logarithmic bound on the expected buying cost (B(P)). Thus, we
have:

Theorem

In the special case of OMCFL in which M = 1, we have

ALG2OMCFL(P) = O(log n) OPTMCFL(P) .

However, we are still working to improve the bound on the expected
renting cost of unmarked clients (Ru(P)).
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