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Combinatorial Optimization Problems

Maximization or minimization problems in which, for each
input there is a set of feasible solutions and, for each solution
there is a cost associated with it.

As an example, lets take the Steiner Tree problem.
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Steiner Tree Problem

Minimization problem whose input is a graph with costs on the
edges, a set of terminal nodes and a set of Steiner nodes. A
feasible solution is a tree that connects all terminal nodes and
its cost is the sum of the edge costs in the tree.
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Rent-or-Buy Problems

Problems in which there is some resource that the algorithm
can rent or buy. A rented resource can be used only once. A
bought resource can be used several times, but its cost is
greater than the renting cost.

As an example, lets take the Single Source Rent-or-Buy
problem.
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Single Source Rent-or-Buy Problem

A rent-or-buy version of the Steiner Tree problem in which all
terminals must be connected to a source. The algorithm can
decide between renting and buying edges. A rented edge can
only be used by one terminal. A bought edge can be used by
all terminals, but its cost is multiplied by M .
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The Sample-and-Augment Technique

A randomized technique to design algorithms for rent-or-buy
problems. The central idea is to decide between renting or
buying a resource using a coin toss. The buying probability is
greater the least is the ratio between buying and renting costs.

As an example, lets take a sample-and-augment algorithm for
the Single Source Rent-or-Buy problem.
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A Sample-and-Augment Algorithm

Algorithm 1: The Sample-and-Augment SSRoB Algorithm

Mark each terminal with probability 1
M

.
Find a tree T for the marked terminals using an approximation
algorithm for the Steiner Tree problem and buy this tree.
Connect the remaining terminals to T using rented shortest
paths.

This algorithm has a constant approximation ratio to the
Single Source Rent-or-Buy problem.
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Online Problems

Problems in which the parts of the input arrive one at a time
and each part need to be served before the next one arrives.
Also, no decision made to serve a part may be changed in the
future.

As an example, lets take the Online Steiner Tree problem.
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Online Steiner Tree Problem

This problem is defined similarly to the Steiner Tree problem,
except that the terminal nodes arrive one at a time. At all
times the terminals must be connected by a tree and no edge
used may be removed in the future.
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Competitive Analysis

Worst case technique used to analyse online algorithms.

We say that an online algorithm ALG is c-competitive if, for
every input I and some α constant, we have that:

ALG(I ) ≤ cOPT(I ) + α.

There are O(log n)-competitive algorithms for the Online
Steiner Tree problem. Also, it is known a Ω(log n) lower bound
to the competitive ratio of any algorithm to this problem.
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Online Rent-or-Buy Problems

It is possible to define a problem that has both rent-or-buy
and online characteristics.

As an example, in the Online Single Source Rent-or-Buy
problem the terminals arrive one at a time and, for each one
that arrives the algorithm has to connect it to the source by
renting or buying edges.

There is a sample-and-augment algorithm known to this
problem that is O(log n)-competitive.
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The Facility Location Problem

In this problem the algorithm have to serve clients in a metric
space by connecting them to facilities. The goal is to minimize
the sum of the distances between clients and facilities
(connection cost) plus the sum of the facilities costs (opening
cost).
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The Online Facility Location Problem

In the online version of the Facility Location problem the
clients arrive one at a time and no opened facility can be
closed in the future, nor the connection between a client and a
facility can be changed.
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The Online Facility Location Problem (cont.)

There are O(log n)-competitive algorithms known for this
problem. In particular, there is a primal-dual algorithm due to
Fotakis that has this competitivity and is used in our result.

Also, it is known a Ω( log n
log log n

) lower bound to the competitive
ratio of any algorithm to this problem.
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Connected Facility Location Problem

This problem is a combination of the Facility Location problem
with the Steiner Tree problem.

There is a set of clients that need to be connected to facilities.
Also, the opened facilities need to be connected to each other
by a tree T . Each edge of T costs M times the regular cost of
it.

The goal is to minimize the total cost of connecting clients,
opening facilities and building the tree.∑

j∈D

d(j ,F ′) +
∑
i∈F ′

f (i) + M
∑
e∈T

d(e)
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Connected Facility Location Problem (cont.)
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Connected Facility Location Problem (cont.)
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Online Connected Facility Location Problem

In the online version of the Connected Facility Location
problem the clients arrive one at a time. Also, no opened
facility can be closed in the future, the connection between a
client and a facility cannot be changed and the edges of the
tree cannot be removed.
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Online CFL Algorithm

Following we present a sample-and-augment algorithm for the
Online Connected Facility Location problem. This algorithm is
based in the algorithm for the CFL due to Eisenbrand et al.

Notice that, while the Online Connected Facility Location
problem is not a rent-or-buy problem, it has some
characteristics that allow us to use the sample-and-augment
technique to design an algorithm for it.
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Online CFL Algorithm

Algorithm 2: The Online CFL algorithm.

Data: G = (V ,E ), d , f , F , root r and M
D ← ∅; F ′ ← ∅; T ← ∅;
f (r)← 0;
send r to compFL;
F ′ ← F ′ ∪ {r}; V (T )← V (T ) ∪ {r};
while a new client j arrives do

send j to compFL;
sample j with probability p = 1

M
;

if j was sampled and connected to a facility i that wasn’t
open then

F ′ ← F ′ ∪ {i};
T ← T ∪ {(i , j)} ∪ {path(j ,V (T ))};

end
let i be the closest open facility to j ;
D ← D ∪ {j}; a(j)← i ;

end
return (F ′ \ {r},T , a);



Analysis of the Online CFL Algorithm

We divide the algorithm cost between facilities opening cost
(O), clients connection cost (C ) and Steiner tree cost (S):

ALGOCFL(D) = O + C + S .

We also divide the cost of the offline optimal solution in this
way:

OPTCFL(D) = O∗ + C ∗ + S∗.
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Analysis of the Online CFL Algorithm (cont.)

Lemma (Opening Cost)

O ≤ cOFL(O∗ + C ∗).

Demonstração.

Let OcompFL be the facility opening cost paid by compFL to
serve {r} ∪ D. Once our algorithm opens a subset of the
facilities opened by compFL to serve {r} ∪ D we have that:

O ≤ OcompFL ≤ cOFLOPTFL({r} ∪ D) ≤ cOFL(O∗ + C ∗) ,

where the last inequality follows since the optimal solution for
CFL is a feasible solution for the OFL.
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Analysis of the Online CFL Algorithm (cont.)

Lemma (Steiner Cost)

E [S ] ≤ cOST(S∗ + C ∗) + cOFL(O∗ + C ∗).

Idea: The Online CFL algorithm builds a tree connecting the
root r to each client in D ′′. Then it augments T connecting
each client j ∈ D ′′ to the facility i that was opened by it. So:

S ≤ McompST({r} ∪ D ′′) + M
∑

j∈{r}∪D′′

d(j , a(j))

≤ McOSTOPTST({r} ∪ D ′) + M
∑
j∈D′

d(j , a(j)) .
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Idea: The Online CFL algorithm builds a tree connecting the
root r to each client in D ′′. Then it augments T connecting
each client j ∈ D ′′ to the facility i that was opened by it. So:

S ≤ McompST({r} ∪ D ′′) + M
∑

j∈{r}∪D′′

d(j , a(j))

≤ McOSTOPTST({r} ∪ D ′) + M
∑
j∈D′

d(j , a(j)) .

LOCo/IC/UNICAMP – December 13th, 2013 – OCFL – Felice, M.C.S. 22/28



Analysis of the Online CFL Algorithm (cont.)

E [OPTST({r} ∪ D ′)] ≤ E

[
S∗

M

]
+ E

[∑
j∈D′

d(j , a∗(j))

]

≤ S∗

M
+
∑
j∈D

1

M
d(j , a∗(j)) ≤ S∗

M
+

C ∗

M
.

Lemma (Connection Cost)

E [C ] ≤ cOFL(O∗ + C ∗) + cOST(S∗ + C ∗ + cOFL(O∗ + C ∗)).
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Analysis of the Online CFL Algorithm (cont.)
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Analysis of the Online CFL Algorithm (cont.)

Theorem

E [ALGOCFL(D)] ∈ O(log n2OPTCFL(D)).

Demonstração.

E [ALGOCFL(D)] = E [O + S + C ]

≤ cOFL(O∗ + C ∗) + (cOST(S∗ + C ∗)

+cOFL(O∗ + C ∗)) + (cOFL(O∗ + C ∗)

+cOST(S∗ + C ∗ + cOFL(O∗ + C ∗)))

= O(log2 n)OPTCFL(D) .

where the last inequality follows because cOFL ≤ 4 log n and
cOST ≤ log n.
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Lower Bound for the Online CFL Problem

It is possible to reduce the Online Steiner Tree problem to the
Online Connected Facility Location problem by choosing all
facility costs to be equal zero and M = 1.

So, the Ω(log n) lower bound to the competitive ratio of any
algorithm to the Online Steiner problem also applies to
algorithms to the Online Connected Facility Location problem.
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