Uma Introdução a Algoritmos de Aproximação

Mário César San Felice

(com materiais da Profa. Carla Negri Lintzmayer do CMCC-UFABC e do Prof. Flávio Keidi Miyazawa do IC-Unicamp)

Universidade Federal de São Carlos Departamento de Computação

16 de Julho de 2021

Classes de Complexidade

Classe P: problemas de decisão que possuem algoritmos eficientes.

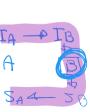
Classe NP: problemas de decisão cuja solução pode ser verificada em tempo polinomial.

Classe NP-Completo: problemas em NP para os quais todo problema em NP é redutível.

Questão P vs. NP: se houver um algoritmo que resolve qualquer problema NP-Completo em tempo polinomial, então todos os problemas em NP também são resolvidos.

Classe NP-Difícil: problemas para os quais todo problema em NP é redutível.

Estamos particularmente interessados em problemas NP-Difíceis.



Abordagens

Se $P \neq NP$, então não podemos ter algoritmos para problemas NP-Difíceis que, simultaneamente,

- encontrem soluções ótimas
- em tempo polinomial
- 1 para qualquer entrada.

Nos resta não exigir todas essas propriedades do mesmo algoritmo!

Algumas abordagens possíveis são

- métodos exatos
- heurísticas
 - algoritmos de aproximação
- ● parametrização

Algoritmos de aproximação

Relaxando a restrição de exigir soluções ótimas, com um detalhe.

Geram soluções viáveis em tempo polinomial e dão garantia no custo da solução gerada com relação ao custo da solução ótima.

Seja A um algoritmo polinomial para um problema de minimização, A(I) o custo da solução de A para a entrada I e OPT(I) o custo da solução ótima.

Aé uma \underline{lpha} -aproximação se, p<u>ara tod</u>a instância I,

$$A(I) \subseteq QOPT(I)$$
 $Q \neq 1$

Se o problema for de maximização, temos a definição

$$A(I) \geqslant AOPT(I)$$
 ds1

Problema da Mochila

Mochila Binária

Entrada: conjunto de n itens, cada item i tem peso w_i e valor v_i , e capacidade W da mochila.

Soluções viáveis: conjuntos de itens $S \subseteq \{1, ..., n\}$ com $\sum_{i \in S} w_i \leq W$

Função objetivo: soma dos valores dos itens em S.

Objetivo: encontrar uma solução de valor máximo.

Exemplo para Algoritmo Guloso para a Mochila

O que acontece no seguinte cenário?

$$W = B$$
 razão
 $v_1 = 2$ $w_1 = 1$ v_1 $v_2 = B$ $v_2 = B$ $v_2 = B$

Algoritmo de aproximação para a Mochila 2 max (4,6) max (4,6)

- 1: função MochilaAprox(n, w, v, W)
- ordene e renomeie os itens para que $\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \ldots \ge \frac{v_n}{w_n}$
- seja q um inteiro tal que $\sum_{i=1}^q w_i \le \widetilde{W}$ e $\sum_{i=1}^{q+1} w_i > \widetilde{W}$ devolve $\max\{v_1+v_2+\ldots+v_q,v_{q+1}\}$

Análise:

Mochila Aprox (...) = max
$$\{v_1 + v_2 + ... + v_q, v_{q+1}\}$$

$$(v_1 + v_2 + ... + v_q + v_{q+1})/2$$

$$(v_1 + v_2 + ... + v_q + v_{q+1})/2 = OPT_P/2$$

De onde vemos que esse algoritmo é uma 1-aproximação.

Problema do Escalonamento

Escalonamento de Tarefas

Entrada: conjunto de tarefas $\{1, \ldots, n\}$, cada tarefa i tem tempo de processamento t_i , e m máquinas idênticas.

Soluções viáveis: partição das tarefas em m conjuntos M_1, M_2, \ldots, M_m .

Função objetivo: $\max_{j=1...m} \sum_{i \in M_j} t_i$ (makespan).

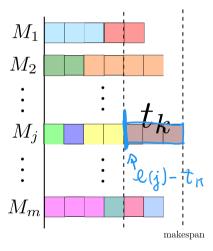
Objetivo: encontrar solução de custo mínimo.

Algoritmo de aproximação para o Escalonamento

Ideia: alocar cada tarefa à máquina que, no momento, tem a menor soma de tempos de processamento.

```
1: função EscalonaAprox(n, t, m)
           faça M_i = \emptyset para i = 1, \ldots, m
   2:
-3:
          para i \leftarrow 1 até n faça
               seja j uma máquina em que \sum_{i' \in M_j} t_{i'} é mínimo
               M_i \leftarrow M_i \cup \{i\}
   5:
          devolve \max_{j=1,...,m} \sum_{i \in M_j} t_i
   6:
```

Seja j a máquina que define o makespan e seja k a última tarefa que foi alocada a essa máquina.



- Seja $V(j) = \sum_{i \in M_j} t_i$ a carga da máquina j.
- Note que, qualquer máquina j' tem carga $I(j') \ge I(j) t_k$ pela escolha gulosa do algoritmo. Então

$$(I(j)-t_k) \sum_{j'=1}^m I(j') = \sum_{i=1}^n t_i$$

De onde

$$l(j) - t_{K} \otimes \frac{1}{m} \sum_{i=1}^{m} t_{i} = OPT_{E} \otimes OPT(I)$$

Temos

$$I(j) - t_k \leq OPT(I)$$

Assim

Assim

Excolors Aprex(I) =
$$l(j) = (l(j) - t_R) + t_R$$
 $t_R \leq ?OPT$
 $t_R \leq ?OPT$

De onde vemos que esse algoritmo é uma 2-aproximação.

Quiz: se o tempo de processamento de qualquer tarefa for no máximo 10% de $\sum_{i=1}^{n} t_i/m$, você consegue melhorar a garantia obtida?

Problema do Caixeiro Viajante

Caixeiro Viajante (TSP)

Entrada: G = (V, E) e função w de peso nas arestas.

Soluções viáveis: circuitos hamiltonianos de *G*.

Função objetivo: soma dos pesos das arestas do circuito.

Objetivo: encontrar um circuito de menor custo.

Considere o problema do Circuito Hamiltoniano, que é NP-Completo:

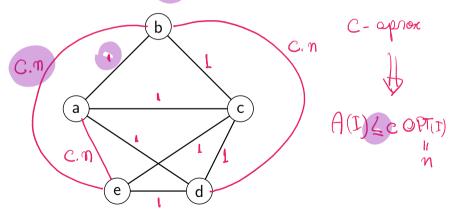
• dado um grafo G = (V, E), existe um circuito que visita cada vértice de G exatamente uma vez?

Lembre que, se $P \neq NP$ então não existe algoritmo polinomial para problemas NP-Completos.

Inaproximabilidade do TSP

Vamos construir um grafo completo G' = (V, E') com peso w nas arestas tal que w(e) = 1 se $e \in E$ e $w(e) = c \cdot n$ se $e \notin E$, para uma constante c.

M



Inaproximabilidade do TSP

Relacionando com o TSP, temos duas possibilidades:

- se G tem um circuito hamiltoniano, então G' tem um circuito hamiltoniano (o mesmo) de custo n,
 - i.e., OPT(G', w) = n;
- \odot se G não tem circuito hamiltoniano, então G' tem (pois é completo), mas ele usa pelo menos uma aresta de custo $c \cdot n$,
 - i.e., $OPT(G', w) > c \cdot n$

Se existir um algoritmo A que é uma c-aproximação para o TSP, então:

Inaproximabilidade do TSP

Se existir um algoritmo A que é uma c-aproximação para o TSP, então:

- $A(G',w) \geq OPT(G',w) > c \cdot n.$

Ou seja, G possui circuito hamiltoniano se e somente se o custo do algoritmo sobre G' for menor ou igual a $c \cdot n$.

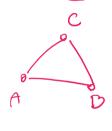
Assim, algoritmo A permite resolver o problema do Circuito Hamiltoniano, que é NP-Completo.

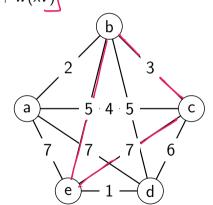
Portanto, não é possível obter uma aproximação constante para o TSP!

Desafio: generalize a prova para mostrar que não é possível obter sequer uma f(n)-aproximação para o TSP.

Se um grafo G = (V, E) com peso w nas arestas é métrico

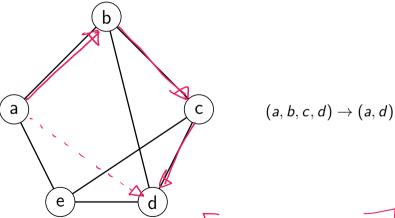
• então ele é completo e para todo trio $u, v, x \in V$ temos que $w(uv) \le w(ux) + w(xv)$





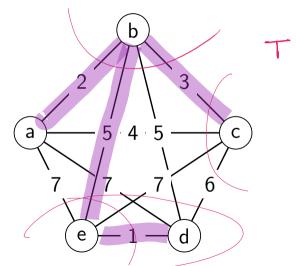
O TSP Métrico é o TSP onde o grafo de entrada é métrico.

Um atalho (short-cut) é a substituição de um caminho entre vértices u e v, $(u, x_1, x_2, \ldots, x_k, v)$, pela aresta uv.

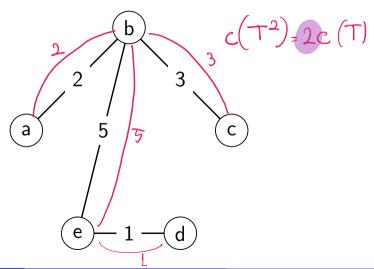


Note que em um grafo métrico, $w(uv) \leq w(u, x_1, \ldots, x_k, v)$.

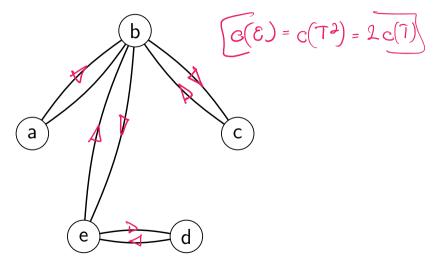
Encontre uma árvore geradora mínima (MST) T de G.

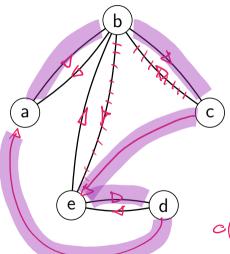


Duplique as arestas de T.



Encontre um ciclo Euleriano \mathcal{E} .





Percorra \mathcal{E} fazendo short-cut se for repetir vértice.

$$\mathcal{E} = (a, b, c, b, e, d, e, b, a)$$

$$\mathcal{C} = (a, b, c, e, d, a)$$

- 1: função TSPMETRICOAPROX(G = (V, E), w)
- $T \leftarrow MST(G, w)$

- 3: $T^2 \leftarrow T$ com arestas duplicadas 4: $\mathcal{E} \leftarrow$ ciclo euleriano em T^2 5: $\mathcal{C} \leftarrow$ circuito hamiltoniano obtido com short-cuts sobre \mathcal{E}
 - devolve \mathcal{C}

Análise:

TSP Matrice Apren (I)
$$\leq 2c(T)$$

 $\leq 2c(P)$
 $\leq 2c(OPT)$

De onde vemos que esse algoritmo é uma 2-aproximação.

Problema da Cobertura por Vértices

Cobertura por Vértices

Entrada: grafo G = (V, E) com peso w nos vértices.

Soluções viáveis: subconjunto $S \subseteq V$ tal que para toda aresta $uv \in E$, $u \in S$ ou $v \in S$.

Função objetivo: soma dos pesos dos vértices em *S*.

Objetivo: encontrar solução de custo mínimo.

Esse problema é um caso particular da Cobertura por Conjuntos.

Problema da Cobertura por Vértices



Quiz: como podemos reduzir o problema da cobertura por vértices ao problema da cobertura por conjuntos?

Formulação em PLI para a Cobertura por Vértices

Sejam x_v variáveis binárias que indicam se o vértice v foi escolhido.

min
$$\sum_{v \in V} \omega_v \propto_v$$

$$4 \text{ J.a. } \left[\sum_{u + \infty} \omega_u + \infty_v \right] \qquad \forall e = \left[u, v \right] \in E$$

$$\approx_u \in \left\{ 0, 1 \right\} \quad \forall_u \in V$$

Programação linear é muito utilizada para encontrar soluções aproximadas.

Assim, considere o PL fruto da relaxação da integralidade do modelo anterior.

Algoritmo de aproximação para a Cobertura por Vértices

```
1: função VERTEXCOVERAPROX(G = (V, E), w)

2: monte e resolva o PL, obtendo x^*

3: para v \in V faça

4: x_v = 1 se x_v^* \ge 0.5

5: x_v = 0, se x_v^* < 0.5

6: devolve x_v = 0
```

Note que a solução construída é viável: como toda aresta satisfaz $x_{\mu}^* + x_{\nu}^* \ge 1$, algum dentre x_{μ}^* e x_{ν}^* deve ser pelo menos 0.5.

Se
$$x_v = 1$$
, então $x_v^* \ge 0.5 \rightarrow x_v = 1 \le 2x_v^*$.

Se $x_v = 0$, então também vale que $x_v = 0 \le 2x_v^*$.

Virties Cours Approx (I) = $\sum_{v \in V} x_v = 2 \text{ OPT}(I)$

De onde vemos que esse algoritmo é uma 2-aproximação.

Desafio: generalizar nosso algoritmo para tratar o problema da Cobertura por Conjuntos.

Problema do Corte Máximo

Corte Máximo em Grafos

Entrada: um grafo G = (V, E).

Soluções viáveis: um corte de G, i.e., um conjunto S tal que $\emptyset \neq S \subset V$.

Função objetivo: número de arestas que sai de S, i.e., $|\delta(S)|$.

Objetivo: encontrar solução de custo máximo.

Algoritmo de aproximação para o Corte Máximo

Vizinhança de um corte S:

ullet cortes que tem apenas um vértice a mais ou a menos que S

Seja c(v) = # de arestas incidentes a v que atravessam o corte e d(v) = # de arestas incidentes a v que não atravessam o corte

```
1: função CORTEMAXIMOBUSCALOCAL(G = (V, E))

2: S \leftarrow um corte inicial; \overline{S} \leftarrow V \setminus S

3: enquanto houver vértice v tal que c(v) \leq d(v) faça

4: se v \in S então S \leftarrow S \setminus \{v\}; \overline{S} \leftarrow \overline{S} \cup \{v\}

5: senão \overline{S} \leftarrow \overline{S} \setminus \{v\}; S \leftarrow S \cup \{v\}

6: devolve S
```

Exemplo de funcionamento do algoritmo

Vamos mostrar que esse algoritmo de busca local termina em tempo polinomial e tem razão de aproximação constante.

Quiz: como generalizar essa heurística para a versão ponderada do Corte Máximo?