
The Steiner Multi Cycle Problem with
Applications to a Collaborative Truckload Problem

Vinicius N. G. Pereira
Institute of Computing, University of Campinas (Unicamp)
Campinas - SP, Brazil
vinicius.pereira@ic.unicamp.br

Mário César San Felice
Department of Computing, Federal University of São Carlos (UFSCar)
São Carlos - SP, Brazil
felice@ufscar.br

Pedro Henrique D. B. Hokama
Production Engineering Department, Federal University of São Carlos (UFSCar)
São Carlos - SP, Brazil
hokama@ic.unicamp.br

Eduardo C. Xavier
Institute of Computing, University of Campinas (Unicamp)
Campinas - SP, Brazil
eduardo@ic.unicamp.br

Abstract
We introduce a new problem called Steiner Multi Cycle Problem that extends the Steiner Cycle
problem in the same way the Steiner Forest extends the Steiner Tree problem. In this problem
we are given a complete weighted graph G = (V,E), which respects the triangle inequality, a
collection of terminal sets {T1, . . . , Tk}, where for each a in [k] we have a subset Ta of V and these
terminal sets are pairwise disjoint. The problem is to find a set of disjoint cycles of minimum
cost such that for each a in [k], all vertices of Ta belong to a same cycle. Our main interest
is in a restricted case where |Ta| = 2, for each a in [k], which models a collaborative less-than-
truckload problem with pickup and delivery. In this problem, we have a set of agents where
each agent is associated with a set Ta containing a pair of pickup and delivery vertices. This
problem arises in the scenario where a company has to periodically exchange goods between two
different locations, and different companies can collaborate to create a route that visits all its
pairs of locations sharing the total cost of the route. We show that even the restricted problem
is NP-Hard, and present some heuristics to solve it. In particular, a constructive heuristic called
Refinement Search, which uses geometric properties to determine if agents are close to each other.
We performed computational experiments to compare this heuristic to a GRASP based heuristic.
The Refinement Search obtained the best solutions in little computational time.

2012 ACM Subject Classification Theory of computation→ Graph algorithms analysis, Theory
of computation → Routing and network design problems, Applied computing → Transportation

Keywords and phrases Steiner Cycle, Routing, Pickup-and-Delivery, Less-than-Truckload

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.26

Funding This work was supported by CNPq (proc. 154505/2015-3, 425340/2016-3, 304856/2017-
7) and FAPESP (proc. 2017/11382-2, 2016/11082-6, 2015/11937-9, 2016/23552-7).

© Vinicius N.G. Pereira, MárioC. San Felice, PedroH.D.B. Hokama, and EduardoC. Xavier;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vinicius.pereira@ic.unicamp.br
mailto:felice@ufscar.br
mailto:hokama@ic.unicamp.br
mailto:eduardo@ic.unicamp.br
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 The SMCP with Applications to a Collaborative Truckload Problem

1 Introduction

In this paper we present the Steiner Multi Cycle Problem (SMCP) and a restricted version of
it, called Restricted Steiner Multi Cycle Problem (R-SMCP), which models a collaborative
less-than-truckload problem with pickup and delivery. In the SMCP one is given a com-
plete weighted metric graph G = (V,E) and a collection of pairwise disjoint terminal sets
{T1, . . . , Tk}. The problem is to find a set of vertex disjoint cycles of minimum cost such that,
for each a ∈ [k], all vertices of Ta belong to the same cycle in a solution. In the R-SMCP we
assume each Ta contains exactly two vertices, a pickup and a delivery, and that {T1, . . . , Tk}
forms a partition of V . This problem models a collaborative less-than-truckload problem
where companies have pickup and delivery locations, and are willing to collaborate in order
to reduce their individual transportation costs, given by a solution where each company
creates a separate route containing only their own pickup and delivery vertices. Notice that
we do not assume an order between the pickup and delivery vertices, since we consider a
recurrent route which a truck will use several times. Throughout the text we refer to each
Ta as an agent that has associated with it the pickup and delivery vertices in Ta.

The SMCP is a generalization of the Steiner Cycle problem (SCP) in the same way
as the Steiner Forest generalizes the Steiner Tree problem. The SCP was introduced by
Salazar-González [18], where he analysed the polyhedral structure associated with the
problem, introducing two lifting procedures to extend facet-defining inequalities from the
travelling salesman polytope. Steinová [19] studied the approximability of the SCP, showing
that the general problem in directed graphs does not admit an approximation algorithm
with polynomial ratio in the input size, unless P=NP. Moreover, Steinová presents a 3

2 -
approximation algorithm for the case in which the input graph is undirected and metric.

As mentioned, the R-SMCP is related to vehicle routing problems, in particular to a
collaborative less-than-truckload problem. Literature in vehicle routing problems is vast and
considers very different constraints, as can be seen at [20] and [1]. The R-SMCP is similar to
the traditional vehicle routing problem with pickup and delivery, for which Parragh et al.
[16] presents a survey. The R-SMCP was also inspired by the Lane Covering Problem with
less-than-truckload shipments (see Ergun et al. [4, 5]). The objective of this problem is to
find a minimum cost set of directed cycles which covers a given set of arcs. Another related
problem is the location-routing problem with simultaneous pickup and delivery, presented
by Karaoglan et al. [13]. In this problem, one is given a graph with customer vertices and
possible depot vertices. Each customer has a pickup and delivery demand to be served by a
route that starts at an opened depot. Pickup demands have to be transported to the depot
and delivery demands have to be delivered from it.

In the less-than-truckload Problem modeled by R-SMCP, we consider that the demand of
each agent is periodically delivered and much smaller than the vehicle capacity, e.g., letters
or small deliveries among mail companies, cash or promissory notes among banks.

Our contributions. We introduce the R-SMCP, prove that it is NP-hard, and present some
algorithms to solve it. In particular, we present an effective heuristic that uses geometric
properties to cluster agents, called Refinement Search, and compare it with a proposed
GRASP (Greedy Adaptive Randomized Search Procedure) heuristic. Also, we show a
4-approximation to the general problem, SMCP.

The paper is organized as follows. Section 2 presents the formal description of the problems,
an ILP formulation and a 4-approximation algorithm for the SMCP. Section 3 presents
heuristics we used to solve the Travelling Salesman Problem. Sections 4 and 5 describe the
proposed methods to solve R-SMCP. Finally, Section 6 presents the computational results.

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:3

2 The Steiner Multi Cycle Problem

In this section we present a formal definition for the SMCP and prove that even its restricted
version is NP-Hard. We also show an integer linear programming formulation for the problem.

The input for the SMCP is a complete graph G = (V,E), with a metric cost function
c : E → R+, and a collection of terminals sets T = {T1, . . . , Tk}, where Ta ⊆ V and
Ta ∩ Tb = ∅ for a and b in [k] with a 6= b. The problem is to find a set C of vertex disjoint
cycles such that, for each a ∈ [k], all terminals in Ta belong to a same cycle. The cost of a
solution C is the sum of the edges’ costs used in its cycles, i.e.,

∑
C∈C

∑
e∈C ce . The goal is

to find a minimum cost solution.
In the restricted version of the problem, R-SMCP, the terminals collection {T1, . . . , Tk}

forms a partition of V and each Ta contains exactly two vertices, a pickup and a delivery. In
this case, we assume that the vertex set contains 2n vertices, V = {1, 2, . . . , 2n} where each
Ta = {a, a+ n} for a ∈ [n]. We define a set of agents A = {1, 2, . . . , n}, such that each agent
a ∈ A has a pickup point pa on vertex a and a delivery point da on vertex a+ n.

Note that, as G is a metric graph, there is always an optimum solution which does not
use Steiner vertices. To see this, suppose an optimum solution with a cycle C = (u1, u2, . . .),
where some uj is a Steiner vertex. We can connect vertices uj−1 and uj+1 directly and
remove uj from C, resulting in a solution with cost at most the cost of C, due to the triangle
inequality. Moreover, this holds to SMCP and R-SMCP.

We can show that the SMCP is NP-Hard since it generalizes the minimum Steiner Cycle
problem. In fact, we proved that even R-SMCP is NP-Hard.
I Theorem 1. The Restricted Steiner Multi Cycle Problem is NP-Hard.1

2.1 An ILP Formulation and its Linear Relaxation
Given an instance (G, c, T) of the SMCP, consider a function f : 2V → {0, 1} such that for
each non-empty set S ⊂ V we have f(S) = 1 if, and only if, for some Ta ∈ T we have that
S∩Ta 6= ∅ and Ta * S, i.e, S is a cut that separates terminals in Ta. With abuse of notation
we use i ∈ T to denote a vertex that is a terminal. The SMCP can be formulated with the
following integer linear program:

min
∑
e∈E cexe (1)

s.t.
∑
e∈δ(i) xe = 2 ∀i ∈ T (2)∑

e∈δ(S) xe > 2f(S) ∅ 6= S ⊂ V (3)
xe ∈ {0, 1, 2} e ∈ E , (4)

where δ(S) denotes the set of edges having exactly one end point in S. The variable xe
indicates if an edge is used in the solution, constraint (2) assures that exactly one cycle
covers each terminal, constraint (3) assures that vertices belonging to a terminal set Ta ∈ T
are connected, and constraint (4) allows each edge to be used at most twice, since in the
case where Ta has just two vertices, a single cycle between them is a valid solution.

Relaxing the integrality constraints (4) we obtain a linear program useful to find lower
bounds for the SMCP and for its restricted version, R-SMCP. Note that the number of
constraints (3) is exponential. However, it is possible to solve the relaxed LP in polynomial
time by solving the separation problem in polynomial time [9]. We find violated constraints
in polynomial time by solving maximum flow problems between each pair of vertices in a
same Ta, through the use of Gomory-Hu trees [8, 11].

1 Proof omitted due to space constraints.

SEA 2018

26:4 The SMCP with Applications to a Collaborative Truckload Problem

2.2 A 4-approximation Algorithm for the Steiner Multi Cycle Problem
A 2-approximation algorithm for the Steiner forest problem was presented by Goemans and
Williamson [7]. We use this algorithm to obtain a 4-approximation algorithm for the SMCP.

Given an instance (G, c, T) of the SMCP, we use the 2-approximation algorithm of [7]
to obtain a Steiner forest F with cost c(F) 6 2OPT(G), where OPT(G) is the cost of an
optimal solution for the SMCP. Duplicate each edge of F , and then find an Eulerian circuit
for each component of F . The cost of all Eulerian circuits is limited by 2c(F) 6 4OPT(G).
Finally, for each component, perform shortcuts in order to transform each Eulerian Circuit
into a cycle, obtaining a valid solution C for the SMCP with cost at most 4OPT(G).

I Proposition 2. There is a 4-approximation algorithm for the Steiner Multi Cycle Problem.

In the remaining of the text we present heuristics for the R-SMCP, since our main interest
is in solving the related collaborative less-than-truckload problem with pickup and delivery.

3 TSP Heuristics

In this section we present the TSP heuristics that are used by our algorithms. All of them
build a cycle cover by first choosing a promising agent partition, and then transforming each
part into a cycle, by using a TSP heuristic. A partition of a set A is a collection {C1, . . . , Ck},
where each Ci ⊆ A, ∪ki=1Ci = A, and for each pair of different parts Ci and Cj we have
Ci ∩ Cj = ∅. We call each set Ci a cluster or a part of A, for i ∈ [k].

Given a cluster C ⊆ V , we use two heuristics to find a minimum cost TSP of C. One is
the Nearest Insertion algorithm and the other is the Christofides algorithm. We apply the
2-OPT local search over the solution found by both heuristics. A detailed description of
these heuristics can be found in [2]. The Nearest Insertion has a time complexity of O(n2),
while Christofides has time complexity O(n3 lg(n)), where n is the number of vertices. The
2-OPT local search can have an exponential time complexity in the worst case. However, it
is usually fast when the initial solution is good.

4 Refinement Search Heuristic

In this section we describe a deterministic heuristic, called Refinement Search, for the
Restricted Steiner Multi Cycle Problem. We first define a measure of proximity, based on
geometric regions, between an agent and any vertex of the graph G. This proximity measure
is used to establish a neighborhood relation between each pair of agents, which determines if
the agents are close to each other. From this, we obtain a partition of the agents and, for
each part, we use a TSP heuristic to obtain a cycle that covers all its agents.

4.1 Region types
Given an agent a in A and a non-negative real number r, we define three types of regions.
Circular Intersection: denoted as RI(a, r), is defined by the intersection of two circles with

radius r, one with center in pa and other with center in da. More precisely, a vertex v is
in the circular intersection region RI(a, r) if, and only if, c(v, pa) 6 r and c(v, da) 6 r.

Circular Union: denoted as RU (a, r), is defined by the union of two circles with radius r,
one with center in pa and other with center in da. More precisely, a vertex v is in the
circular union region RU (a, r) if, and only if, c(v, pa) 6 r or c(v, da) 6 r.

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:5

Elliptical: denoted as RE(a, r), is defined by the ellipse with focal points pa and da, and
eccentricity c(pa, da)/2r. More precisely, a vertex v is in the elliptical region RE(a, r) if,
and only if, c(v, pa) + c(v, da) 6 2r.

In the algorithm, we use a factor α ∈ R+ to define the radius used by all agents. Given an α
value, an agent a will have its regions defined with radius ra = α · c(pa, da), where c(pa, da)
is the edge cost connecting the agent’s vertices in Ta.

It is not hard to see that, for any type of region, if we increase the radius which defines
it, the region can only increase with new vertices being added to it.

I Lemma 3. Given an agent a ∈ A and two radius r, r′ ∈ R+, with r 6 r′, we have that
Rx(a, r) ⊆ Rx(a, r′), for any region type Rx ∈ {RI , RE , RU}.

Given an agent, its circular intersection region is contained in its elliptical region which
is contained in its circular union region, as long as these are defined with the same radius.

I Lemma 4. Given a ∈ A and r ∈ R+, we have that RI(a, r) ⊆ RE(a, r) ⊆ RU (a, r).

While the concept of region allows us to relate an agent with a vertex, in order to establish
a pairwise relationship among agents, we introduce the concept of neighborhood.

4.2 Neighborhood types
Given agents a and b in A, with regions Ra and Rb, we define two types of neighborhood.
Total: agents a and b are total neighbors if pb and db are in Ra, or if pa and da are in Rb.
Partial: agents a and b are partial neighbors if pb or db are in Ra, or if pa or da are in Rb.
Intuitively, two agents are total neighbors if both vertices of an agent are inside the other’s
region. Similarly, two agents are partial neighbors if at least one vertex from an agent is
inside the other’s region. Thus, every total neighbors are partial neighbors. Also, note that
the neighborhood relation is symmetric.

Now that the pairwise relationship among agents is defined, we introduce the concept of
component in an auxiliary graph to establish a partition of agents.

4.3 Auxiliary Graph and Components
Take a set of agents A, a collection of regions R, such that each agent a ∈ A has a
region Ra ∈ R, and a neighborhood type Ny ∈ {NT , NP }, where NT stands for the Total
neighborhood and NP for the Partial neighborhood. Consider an auxiliary graph in which
there is a vertex for each agent, and there is an edge between two vertices if, and only
if, the corresponding agents are neighbors. Notice that the connected components of this
auxiliary graph form a partition P on the set of agents. Thus, from now on we use the
words component and part (of the partition) interchangeably to refer to the agents of a same
component of this auxiliary graph.

When considering partitions, there is an interesting property called refinement. We say
that a partition P is finer than P ′ (or that P ′ is coarser than P) if, and only if, every set in
P is uniquely contained by some set of P ′. Note that the refinement property is transitive.

The following lemma shows a relationship between regions and refinement.

I Lemma 5 (Region Refinement). Consider a set of agents A, two collections of regions
R and R′, each containing one region Ra for each agent a ∈ A, and a neighborhood type
Ny ∈ {NT , NP }. Suppose that, for each agent a ∈ A, Ra ⊆ R′a, where Ra ∈ R and R′a ∈ R′.
The components obtained using R and R′, with the same neighborhood type Ny, induce
partitions P and P ′ such that P is finer than P ′.

SEA 2018

26:6 The SMCP with Applications to a Collaborative Truckload Problem

Due to Lemmas 3 and 4, the previous lemma implies that, when all other parameters
are constant, if the radius factor α increases, or the region type RI changes to RE , or RE
changes to RU , then we have a new partition which is coarser than the previous one.

The following lemma shows a relationship between neighborhood types and refinement.

I Lemma 6 (Neighborhood Refinement). Consider a set of agents A, a collection of regions R,
and neighborhood types NT and NP . The components obtained using R, with neighborhood
types NT and NP , induce partitions PT and PP such that PT is finer than PP .

4.4 Dynamic Programming Algorithm for the Refinement Search
Given an input (G, c, T) of the R-SMCP, consider a partition P(α,Rx,Ny) induced by radius
factor α ∈ R+, region type Rx and neighborhood type Ny. We denote by S(α,Rx,Ny) the
solution for R-SMCP obtained by using a TSP heuristic to construct a cycle on each
component of P(α,Rx,Ny). Moreover, given a component C ∈ P(α,Rx,Ny), we denote by
S(α,Rx,Ny)(C) the solution of S(α,Rx,Ny) restricted to the agents in C.

The idea of the algorithm is to construct partitions of the agents using different types of
regions, different values of α, and different types of neighborhood. First, lets describe how
we choose the different values of α. We fix a region type Rx and neighborhood type Ny. For
each pair of agents a and b, we find the smallest factor αab such that there is an edge between
a and b in the auxiliary graph. Notice that, if we use a radius factor αmin = mina,b∈A αab− ε
then |A| components exist in the auxiliary graph. We construct a list of size O(|A|2) of
radius factors containing αmin and αab for each pair of agents a, b ∈ A. A shorter list of
radius factors is constructed as follows. Consider the list of factors sorted in increasing order,
where the first value αmin is inserted in the beginning of the list. For the remaining values
of factors, if its use decreases the number of components in the current auxiliary graph, then
this α value is included in the list. Thus, the shorter list of radius factors contains |A| values,
since we start with |A| components and finish with just a single component.

For each region type Rx and neighborhood type Ny we have a list of radius factors. So,
there are at most 6|A| radius factors which we save in the list α = [α1, α2, . . .] arranged in
increasing order. A basic idea for a heuristic to solve the R-SMCP is to generate a partition
P(α,Rx,Ny) for each region type Rx, neighborhood type Ny, and radius factor α in the final list
of factors. Then, for each component in P(α,Rx,Ny) construct a cycle using a TSP heuristic
obtaining a solution S(α,Rx,Ny). Thus, we could return the best solution found considering
all these 6|A| solutions.

However, we can find better solutions using the refinement property, since it allows
us to mix solutions of different region types, neighborhood types and radius factors. For
example, consider an instance with 10 agents where, if we use α = 0.5, region RU , and
neighborhood NP , we obtain the partition P(0.5, RU , NP) = {{a1, a5, a6}, {a2, a3, a4, a7},
{a8, a9, a10}}. From Lemmas 3, 5 and 6, we can obtain finer solutions by changing either
the region type, or the neighborhood type, or the value of α. Thus, we can obtain the
following finer solutions P(0.5, RI , NP) = {{a1, a5}, {a6}, {a2, a3}, {a4, a7}, {a8, a9, a10}},
and P(0.5, RU , NT) = {{a1, a5, a6}, {a2, a3, a4}, {a7}, {a8, a9}, {a10}}, and P(0.4, RU , NP)
= {{a1}, {a5, a6}, {a2, a3}, {a4, a7}, {a8, a9, a10}}. Then, when finding the best solution for
P(0.5, RU , NP) we could use {a2, a3}, {a4, a7} from P(0.4, RU , NP) if the two cycles have a
smaller cost than the single cycle for {a2, a3, a4, a7} obtained by P(0.5, RU , NP). This way
the best solution could be P(0.5, RU , NP)∗ = {{a1, a5, a6}, {a2, a3}, {a4, a7}, {a8, a9, a10} }.

Since the refinement property is transitive, we can recurse further until the finest possible
level, checking which parts of a solution should be replaced by smaller parts of finer solutions.

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:7

Algorithm 1: Refinement Search.
Input : (G, c, T) and a vector α = [α1, α2, . . . , α6|A|] radius factors in increasing order.
Output :A cycle cover C.

1.1 foreach αi, i ∈ [1, 2, . . . , 6|A|] do
1.2 foreach neighbor type Ny ∈ (NT , NP) do
1.3 foreach region type Rx ∈ (RI , RE , RU) do
1.4 foreach C ∈ S(αi,Rx,Ny) do
1.5 C1 ← S∗(αi−1,Rx,Ny)(C)
1.6 C2 ← S∗(αi,Rx−1,Ny)(C)
1.7 C3 ← S∗(αi,Rx,Ny−1)(C)
1.8 S∗(αi,Rx,Ny) ← (S(αi,Rx,Ny)\C) ∪min_cost{C,C1, C2, C3}

1.9 return S∗(α6|A|,RP ,RU)

Let the region types be organized from finer to coarser, i.e., (RI , RE , RU) and the same for
the neighborhood types, i.e., (NT , NP). For a set of agents C, remember that S(α,Rx,Ny)(C)
is the solution obtained from P(α,Rx,Ny) restricted to the agents in C. Formally, we want to
find the best solution for all agents which can be described by the recurrence

S∗(αj ,Rx,Ny)(A) =
∑

C∈P(α,Rx,Ny)

min

cost(S(αj ,Rx,Ny)(C))
cost(S∗(αj ,Rx−1,Ny)(C))
cost(S∗(αj ,Rx,Ny−1)(C))
cost(S∗(αj−1,Rx,Ny)(C))

where, for each component C ∈ P(α,Rx,Ny) we choose the best solution which can be obtained
by considering the current solution S(αj ,Rx,Ny)(C) using current radius factor, region type
and neighborhood type, and the best solutions which are finer for this set of agents C.

The Algorithm 1 shows the pseudocode of a dynamic programming algorithm called
Refinement Search. The algorithm constructs solutions in a bottom up fashion, from the
base case with the finest α, neighborhood type, and region type to the coarsest ones. For
each component C in the standard solution S(α,Rx,Ny) of an iteration of loops (1.1 - 1.3), the
algorithm checks if in a finer solution, the agents in C were covered with a smaller cost. The
best solution for C among the current solution and the finer ones, is set on line 1.8.

5 GRASP Heuristic

In this section we present our GRASP based heuristic, which uses the Greedy Randomized
Adaptative Algorithm described in Section 5.2 to generate initial solutions. After finding
an initial solution, it performs a local search with the algorithm described in Section 5.3.
The GRASP heuristic repeats this process until a stopping criteria occurs, which can be
a maximum running time or a maximum number of iterations. Then, it returns the best
solution found. The meta-heuristic GRASP was introduced by Feo and Resende [6] and
it has been successfully applied to several combinatorial optimization problems [17]. More
information is available in Resende and Ribeiro [17].

5.1 Basic Definitions for the GRASP Heuristic
The GRASP heuristic uses a contracted graph to find a partition of the agents set. This
contracted graph is built using a measure of distance between each pair of agents, thus, we
propose several ways to determine this measure of distance.

SEA 2018

26:8 The SMCP with Applications to a Collaborative Truckload Problem

Given an input (G, c, T) of the R-SMCP, each agent a ∈ A has a pickup vertex pa and a
delivery vertex da. The contracted graph GA = (A,EA) is a complete weighted graph, in
which each agent a ∈ A corresponds to a single vertex and the distance between agents a
and b, is defined according to one of the following six types of distances:
Distance 1 is the minimum cost of edges necessary to complete the cycle containing edges

(pa, da) and (pb, db). More formally, dist1(a, b) = min{c(pa, pb) + c(da, db), c(pa, db) +
c(da, pb)} . This distance is symmetric and satisfies the triangle inequality.

Distance 2 is 0 if a = b, or the minimum cost of building a cycle that contains the pickup
and delivery vertices of agents a and b. More formally, for a 6= b,

dist2(a, b) = min
{

dist1(a, b) + c(pa, da) + c(pb, db),
c(pa, db) + c(db, da) + c(pb, da) + c(pa, pb)

}
This distance is symmetric and satisfies the triangle inequality.

Distance 3 is 0 if a = b, or the minimum cost to connect pickup and delivery vertices of a
to the pickup or delivery vertex of b. More formally, for a 6= b,

dist3(a, b) = min
{
c(pa, pb) + c(da, pb),
c(pa, db) + c(da, db)

}
This distance is not symmetric and does not satisfy the triangle inequality.

Distance 4 is the symmetric version of dist3, i.e., the minimum cost between applying dist3
to (a, b) and to (b, a). More formally, dist4(a, b) = min{dist3(a, b), dist3(b, a)} . This
distance is symmetric, but does not satisfy the triangle inequality.

Distance 5 is the minimum cost of edges necessary to connect a vertex from agent a to a ver-
tex from agent b. More formally, dist5(a, b) = min{c(pa, pb), c(pa, db), c(da, pb), c(da, db)} .
This distance is symmetric, but does not satisfy the triangle inequality.

Distance 6 is the cost of a minimum path on the contracted graph using Distance 5 as edges
costs. More formally, let GA5 be the contracted graph using Distance 5, dist6(a, b) =
minP∈P{c(P)|a ∈ P, b ∈ P} , where P is the set of all paths in GA5 and c(P) is the cost
of path P . This distance is symmetric and satisfies the triangle inequality.

5.2 Greedy Randomized Adaptive Algorithm
The Greedy Randomized Adaptive algorithm, presented in Algorithm 2, creates n different
partitions of the agents set, starting with a partition containing just one cluster with all agents.
The algorithm iteratively constructs a new partition, increasing by one the number of clusters
in it, until a final partition containing n clusters with isolated agents is created. For each
partition, the algorithm creates a cycle cover by using the TSP heuristics described in Section
3 to construct a cycle for each cluster in the partition. Among all cycle covers created, the
one with minimum cost is returned as solution. The algorithm starts by choosing at random
an initial head (line 2.1) and by creating an initial cluster C1 containing all vertices (line 2.3).
Then, it computes the cost of the corresponding cycle cover of this initial clustering (line 2.4)
and sets this solution as the best one so far. In any iteration of the main loop (lines 2.5 -
2.17), we begin with a partition with clusters C1, . . . , Ck−1 and we want to construct a new
partition C1, . . . , Ck, with one more cluster. Each cluster Ci has a special vertex denominated
head, denoted by hi. The algorithm proceeds by choosing a new head hk, which is chosen as
the agent that is farthest from its current head (lines 2.6 - 2.7). Then the algorithm re-creates
the clusters C1, . . . , Ck containing only their respective heads and, for each agent a which is
not a head, it is re-assigned to the cluster of minimum distance (lines 2.9–2.14). The distance

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:9

Algorithm 2: Greedy Randomized Adaptive.
Input : (G, c,A), a distance function dist, and a threshold T .
Output :A cycle cover C.

2.1 initial_head← a random vertice ∈ A
2.2 initial_head becames the head of cluster C1;
2.3 All agents are assigned to C1;
2.4 best_cover ← a cycle cover computed from C1;
2.5 for k ← 2 to n do
2.6 new_head← the agent that is farthest from its closest head;
2.7 new_head becomes a head of cluster Ck;
2.8 Remove all agents that are not a head from their clusters and put them on a list L
2.9 while there are elements in L do

2.10 Let min_dist and max_dist be the minimum and maximum distance of any agent in L
to any cluster, respectively;

2.11 Create RCL list with the agents that are in a distance less than or equal to
(min_dist+ T (max_dist−min_dist));

2.12 Randomly choose an agent a in RCL;
2.13 Put the a in its closest cluster;
2.14 Remove a from L;
2.15 Let C be a cycle cover computed from clusters C1 to Ck;
2.16 if cost of C is less than cost of best_cover then
2.17 best_cover ← C

2.18 return best_cover

of agent a to a cluster C is defined as dist(a,C) = minb∈C {dist(a, b)} . Since we want a
greedy randomized initial solution, instead of attributing each agent to the closest cluster
in a deterministic greedy fashion, the heuristic creates a Restricted Candidate List (RCL)
with the agents that are close to some cluster. More precisely, the RCL is created as follows,
let min_dist and max_dist be the minimum and maximum distance, respectively, of any
agent to any cluster. Given a threshold T , which is a value between 0 and 1, the algorithm
constructs the RCL (lines 2.10 - 2.11) as the set containing every agent whose distance to
a cluster is at most (min_dist+ T (max_dist−min_dist)). Then the algorithm chooses,
uniformly at random, one of theses agents, and assigns it to its closest cluster (lines 2.12 -
2.13). Notice that the minimum distance of the remaining agents in L has to be updated,
since they may now become closer to the cluster where agent a was inserted. The algorithm
proceeds until all agents are assigned to some cluster in {C1, . . . , Ck}. Finally, the algorithm
obtains a solution for the R-SMCP by running a TSP heuristic for each cluster (line 2.15)
and it saves this solution if it is better than the current best one (lines 2.16 - 2.17).

5.3 Local Search

The Local Search algorithm begins with a current solution and then generates a set of
neighbour solutions. If one of these has a cost reduction compared to the current solution,
then the algorithm updates the current solution with the best neighbour solution found. It
repeats this process until there is no significant improvement.

The algorithm used to find the best solution among the neighbour solutions is presented
in Algorithm 3. The set of neighbor solutions S initially contains only the current solution
(line 3.1). For each agent a, the algorithm builds several new solutions as follows. In one of
the new solutions agent a is removed from its current cycle and is left alone in an isolated
cycle (line 3.3). The other solutions are constructed by removing agent a from its current
cycle and inserting it in another cycle (lines 3.5 - 3.6). In the Computational Results section
we use a first improvement variant of this algorithm, where it returns the first generated

SEA 2018

26:10 The SMCP with Applications to a Collaborative Truckload Problem

Algorithm 3: Find Best Neighbor Solution
Input : (G, c,A) and an initial solution S′.
Output :A solution.

3.1 Let S be a set of solutions initially containing only S′
3.2 foreach a in A do
3.3 S ← isolate(S′, a)
3.4 Add S to S
3.5 foreach cycle C in S′ do
3.6 S ← swap_cycle(S′, C, a)
3.7 Add S to S

3.8 return the best solution in S

solution that improves the current one S′. The first improvement variant obtained better
results since the complete local search has to explore a costly neighbourhood, where for each
swap of agent a, we need to run the TSP heuristics to rebuild a cycle.

6 Computational Results

All computations were performed in a single thread of an Intel Core™i7-4790 processor at
3.60GHz with 16GB of RAM, with Linux. The algorithms were implemented in C++, using
the Graph library Lemon [14]. To solve the linear relaxation we used the Gurobi solver [10].

6.1 Instances
Since, to the best of our knowledge, there is no previous work on the R-SMCP, we have
tested our algorithms on two types of instances: type 1 is a set of instances from the
multi-commodity one-to-one pickup-and-delivery traveling salesman problem (m-PDTSP),
and type 2 is a set of newly random generated instances.

Hernández-Pérez and Salazar-González [12] generated a set of instances to the m-PDTSP.
For each instance, they generated 2n− 2 uniformly random points with coordinates from
−500 to 500, a vertex in position 0 with coordinates (0, 0) and a vertex in position 2n− 1
also with coordinates (0, 0) (corresponding to Class 3 of [12]). We only take into account the
vertex distribution of these instances. For each i ∈ {0, ..., n− 1}, we consider vertex i as a
pickup point of an agent and i+ n as its corresponding delivery point. The instances have 6,
11 and 16 agents, with a total of 210 instances. This set of instances is the type 1.

We also generated a set of instances having 16, 32, 64, 128 and 256 agents, where vertices
corresponds to points distributed in a square of dimensions 100000× 100000. The square is
divided in 1× 1, 2× 2, 3× 3, 4× 4 and 5× 5 frames, and each pair of pickup and delivery
is in the same frame. The space between frames, which we call a wall, has 0%, 10%, 20%,
30% or 40% of the frame’s size. The wall can be seen as a rectangle separating the different
frames (see Figure 1). The location of each point is chosen uniformly at random. For
each combination of number of agents, number of frames, and wall size, 3 instances were
generated with different seeds. Notice that for the instances with division 1× 1 there is no
wall. Therefore, we generated a set of 315 instances. This set of instances is the type 2 and
it can be found in the Laboratory of Optimization and Combinatorics website [15].

6.2 Final Results
We first compared the GRASP algorithm in different versions, each version using a different
distance measure between agents (see Section 5.1). Figure 2 shows the performance profiles
[3] comparing the different versions of the GRASP algorithm. This graphic is build as follows.

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:11

(a) 1x1 (b) 3x3 (c) 3x3 wall 0.3

Figure 1 Instances randomly generated with 16 agents, in (a) a 1× 1 frame with no wall, in (b)
a 3× 3 frame with 0% wall and in (c) a 3× 3 frame with 30% wall.

1.00 1.05 1.10 1.15
60

70

80

90

100

GRASP

Distance 1
Distance 2
Distance 3
Distance 4
Distance 5
Distance 6

Figure 2 Comparison between the GRASP algorithm running with different distances. The line
that appears closer to the upper-left corner gives the best results, in this case distance 6.

First of all, we execute each version of the algorithm on all instances, obtaining the solution
cost of each algorithm version for each instance. The performance profile graphic consists of
a curve for each algorithm version. A curve of an algorithm version is constructed in the
following manner: for each instance, we compute the ratio between the versions’s solution
cost and the best solution obtained for that instance among all algorithm versions.

The performance profile of an algorithm version is a plot of the cost ratios (x axes) versus
the percentage of instances that this algorithm version could solve within at most that ratio
(y axes). From Figure 2 we see that, except for the version using distance 2, all versions
solved more or less 75% of the instances with ratio 1, meaning that they found 75% of the
best solutions. In fact, the version using distance 6 solved almost 80% of the instances with
ratio 1, and 100% of the instances with ratio 1.05, meaning that it found 80% of the best
solutions and the other solutions had a cost at most 5% higher than the best solutions found.
So we decide to use distance 6 in the GRASP algorithm. As for the threshold T of the
adaptive method, defined on Section 5.2, we tested the values of 0.2, 0.4, 0.6, 0.8, and 1, and
in general the best results were obtained with T = 0.6.

The GRASP algorithm was set to run for log2(n) iterations, where n is the number of
agents in that instance. Figure 3 presents the performance profiles of the GRASP algorithm
and the Refinement Search. We also included the results of the lower bound obtained by
solving the LP. For the type 1 instances, the Refinement Search found optimal solutions for
approximately 60% of the instances, while GRASP found 40% of optimal solutions, and the
Refinement Search found solutions to all instances with cost at most 6% higher than the
lower bound given by the LP solution. For the type 2 instances we obtained similar results.

SEA 2018

26:12 The SMCP with Applications to a Collaborative Truckload Problem

1.00 1.05 1.10

40

60

80

100

ratio

n
u
m
b
er

of
in
st
an

ce
s(
%
)

LP
Refinement Search

GRASP

(a) Comparison for instances of type 1.

1.00 1.05 1.10
0

50

100

ratio

n
u
m
b
er

of
in
st
an

ce
s(
%
)

LP
Refinement Search

GRASP

(b) Comparison for instances of type 2.

Figure 3 Comparison between GRASP and Refinement Search heuristics.

Table 1 Results separated by instance classes.

GAP(%) time (s)
Classes # inst RS GRASP RS GRASP
m-PDTSP 210 0.76 1.99 0.02 0.01
1x1 15 4.64 5.58 42.02 306.35
2x2 75 2.99 3.79 30.69 89.09
3x3 75 2.39 3.75 31.15 63.25
4x4 75 1.82 3.44 29.93 78.58
5x5 75 1.56 3.43 29.56 86.52
W0.0 75 3.72 5.13 34.45 290.09
W0.1 60 3.27 4.91 30.83 85.98
W0.2 60 2.00 3.45 29.59 9.04
W0.3 60 1.11 2.35 29.16 7.83
W0.4 60 1.06 2.30 29.54 7.93
rg-016 63 0.38 1.81 0.03 0.01
rg-032 63 1.16 2.69 0.22 0.10
rg-064 63 2.44 4.19 1.98 1.34
rg-128 63 3.51 4.69 15.62 26.71
rg-256 63 4.04 5.11 136.59 422.69
total average 1.69 3.02 18.54 54.11

In Table 1 we present a comparison of the Refinement Search (RS) and GRASP separating
the results by the type and properties of the instances. In this table, in each line, we present
the average GAP, and time, of the instances of a certain class compared to the lower bound
obtained by solving the LP. The line m-PDTSP contains the results of the instances of type
1. For the type 2 instances, we sub-divided it depending on some properties. The “1× 1”
class contains results of the instances with one frame, while the “2× 2” contains the results
of the instances with 4 frames and so on. The “W0.x” class contains the results of the
instances with wall separation of (10× x)% of the size of the frame. In the last lines, the
“rg-n” classes, we separated the instances by the number of agents n. The Refinement Search
algorithm consistently obtained the lowest gaps and, in general, was also faster than the
GRASP algorithm. We observe that the cost of the Refinement Search solution was, on
average, 1.29% lower than the cost of the GRASP solution. We conjecture that Refinement
Search performs better than GRASP because the latter works with agents as vertices of a
modified graph, while the former deals with the original graph with pairs of vertices.

V.N. G. Pereira, M. C. San Felice, P. H.D. B. Hokama, and E. C. Xavier 26:13

References
1 Jose Caceres-Cruz, Pol Arias, Daniel Guimarans, Daniel Riera, and Angel A Juan. Rich

vehicle routing problem: Survey. ACM Computing Surveys (CSUR), 47(2):32, 2015.
2 William J Cook, WH Cunningham, WR Pulleyblank, and A Schrijver. Combinatorial

optimization. Springer, 2009.
3 Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with perfor-

mance profiles. Mathematical programming, 91(2):201–213, 2002.
4 Özlem Ergun, Gültekin Kuyzu, and Martin W. P. Savelsbergh. Reducing truckload trans-

portation costs through collaboration. Transportation Science, 41(2):206–221, 2007.
5 Özlem Ergun, Gültekin Kuyzu, and Martin W. P. Savelsbergh. Shipper collaboration.

Computers & OR, 34(6):1551–1560, 2007.
6 Thomas A Feo and Mauricio GC Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations research letters, 8(2):67–71, 1989.
7 Michel X. Goemans and David P. Williamson. A general approximation technique for

constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.
8 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, 1961.
9 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.
10 Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016. URL: http://www.

gurobi.com.
11 Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on

Computing, 19(1):143–155, 1990.
12 Hipólito Hernández-Pérez and Juan-José Salazar-González. The multi-commodity one-

to-one pickup-and-delivery traveling salesman problem. European Journal of Operational
Research, 196(3):987–995, 2009.

13 Ismail Karaoglan, Fulya Altiparmak, Imdat Kara, and Berna Dengiz. The location-routing
problem with simultaneous pickup and delivery: Formulations and a heuristic approach.
Omega, 40(4):465–477, 2012.

14 Lemon. Library for efficient modeling and optimization in networks, 2016. URL: http:
//lemon.cs.elte.hu/trac/lemon/.

15 LOCo - UNICAMP. Laboratory of optimization and combinatorics, 2016. URL: http:
//www.loco.ic.unicamp.br.

16 Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl. A survey on pickup and delivery
problems. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

17 Mauricio GC Resende and Celso C Ribeiro. Optimization by GRASP: Greedy Randomized
Adaptive Search Procedures. Springer, 2016.

18 Juan-José Salazar-González. The Steiner cycle polytope. European Journal of Operational
Research, 147(3):671–679, 2003.

19 Monika Steinová. Approximability of the minimum Steiner cycle problem. Computing and
Informatics, 29(6+):1349–1357, 2012.

20 Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications, vol-
ume 18. Siam, 2014.

SEA 2018

http://www.gurobi.com
http://www.gurobi.com
http://lemon.cs.elte.hu/trac/lemon/
http://lemon.cs.elte.hu/trac/lemon/
http://www.loco.ic.unicamp.br
http://www.loco.ic.unicamp.br

	Introduction
	The Steiner Multi Cycle Problem
	An ILP Formulation and its Linear Relaxation
	A 4-approximation Algorithm for the Steiner Multi Cycle Problem

	TSP Heuristics
	Refinement Search Heuristic
	Region types
	Neighborhood types
	Auxiliary Graph and Components
	Dynamic Programming Algorithm for the Refinement Search

	GRASP Heuristic
	Basic Definitions for the GRASP Heuristic
	Greedy Randomized Adaptive Algorithm
	Local Search

	Computational Results
	Instances
	Final Results

