
A Heuristic Approach for the
Stochastic Steiner Tree Problem

Pedro Hokama?, Mário C. San Felice??,
Evandro C. Bracht? ? ?, and Fábio L. Usberti†

University of Campinas - UNICAMP, Campinas SP 13083-852, Brazil,
http://www.ic.unicamp.br/~fusberti

Abstract. This paper addresses the two-stage stochastic Steiner tree
problem (SSTP), which is one of the Steiner problems that belongs to
the 11th DIMACS challenge. In the SSTP there is a finite number of
scenarios in which the terminal set and the edge costs are subject to
uncertainty. In the first stage, we have the probabilistic information in
terms of possible scenarios. A scenario specifies a terminal set, second
stage edge costs, and a probability for it to be realized. The objective is
to select edges to be purchased in the first stage, while minimizing the
expected cost of the full solution.

In this paper we propose a biased random-key genetic algorithm (BRKGA)
for the SSTP. A constructive heuristic, based on reduced cost informa-
tion of the edges, is used to populate the initial set of solutions for
the BRKGA. The proposed metaheuristic was extensively tested with
instances from literature and from the DIMACS benchmark, which in-
cludes large scale instances, with 20 times more scenarios than previously
tested instances. Results show that the BRKGA obtained near optimal
solutions to the instances from literature and achieved considerable cost
reductions for the DIMACS instances.

Keywords: Steiner Tree, Stochastic Optimization, Genetic Algorithms,
BRKGA, DIMACS challenge.

1 Introduction

The classical Steiner tree problem (STP) in graphs is a combinatorial optimiza-
tion problem with several applications, including: network design problems (e.g.,
communication and power systems) [1984], wire routing in VLSI circuits [1990]
and the study of phylogenetic trees [1967]. The objective of the STP is to find a
minimum cost network spanning a given subset of nodes (terminals).

? hokama@ic.unicamp.br. Supported by FAPESP grant 2011/13382-3
?? felice@ic.unicamp.br. Partially supported by FAPESP grant 2009/15535-1.

? ? ? evandro@ic.unicamp.br. Partially supported by FAPESP grant 03/13815-0 and State
University of Mato Grosso do Sul - UEMS
† fusberti@ic.unicamp.br. Partially supported by CNPq grant 483137/2013-8

In practice, network planners are often faced with uncertainty with respect
to the input data. Therefore, solving an instance in which the knowledge of the
input is not certain might provide solutions whose cost deviate substantially
from the optimum value.

Stochastic optimization is a field of investigation that takes into account un-
certainties arising from real-life optimization problems. In the stochastic Steiner
tree problem (SSTP) the terminal nodes are only known probabilistically. Thus,
instead of buying edges to connect a given terminal set, edges are bought in a
first stage considering a set of possible future scenarios, one of which will even-
tually arise. Each scenario is characterized by its terminal set, second stage edge
costs and an occurrence probability. In a second stage, edges at an inflated cost
are bought to complete a Steiner tree with the first stage edges for the scenario’s
terminal set. The expected cost of a solution is the sum of first stage edge costs
plus the weighted sum of second stage edge costs of all scenarios. The weights
correspond to the scenarios probabilities.

Figs. 1-2 depict an instance of the SSTP with ten nodes and five scenarios,
and its corresponding optimum solution, which includes the first and second
stage edges.

12

13

8

14 17

16

14

11

16
9

9

9

11

20

9

13

15

13

11

9

20

15 18

13

19

14

15

18

9

13

12

18

15

10

8

22

14 19

14

17

16

13

17

10

11

p1 = 0.19050 p2 = 0.14290

14

19

13

10

9

23

14 20

13

19

17

15

18

11

13

13

16

15

9

9

23

16 17

16

17

15

13

19

10

14

15

18

14

11

8

22

16 17

15

20

16

13

16

11

13

p3 = 0.14290 p4 = 0.30950 p5 = 0.21420

Fig. 1. SSTP instance with five scenarios (terminals in red).

Gupta et al. [2007] investigated approximation algorithms for the SSTP, prov-
ing a constant factor approximation for the SSTP when the second stage costs

12

13

9

8

20

14 17

16

14

11

16

9

9

11

9

13

15

13

11

9

20

15 18

13

19

14

15

18

9

13

0

0

11

20

12

18

15

10

8

22

14 19

14

17

16

13

17

10

11

0

0

8

15

17

p1 = 0.19050 p2 = 0.14290

14

19

13

10

9

23

14 20

13

19

17

15

18

11

13

0

0

10

11

23
13

16

15

9

9
23

16 17

16

17

15

13

19

10

14

0

0

15

18

14

11

8

22

16 17

15

20

16

13

16

11
13

0

0

8

13

22

p3 = 0.14290 p4 = 0.30950 p5 = 0.21420

Fig. 2. Solution of the first (blue) and second (red) stages.

are determined by a fixed inflation factor. The algorithm is based on a primal-
dual scheme, guided by a relaxed integer linear programming (ILP) solution.
Gupta et al. [2007] have also shown that the general case (non-fixed inflation) is

as hard as Label Cover (Ω(2log
1−ε n)-hard). Shmoys and Swamy [2006] presented

a 4-approximation for the SSTP using cost-sharing properties.
Bomze et al. [2010] proposed a two-stage branch-and-cut algorithm which

uses integer L-shaped cuts. The authors present the first computational studies
for the SSTP, showing optimal solutions for instances up to 50 scenarios and 274
edges.

Our Contributions. In this paper, we propose an effective biased random key
genetic algorithm (BRKGA) for the SSTP. Our methodology obtains low cost
solutions for large scale instances with 20 times more scenarios than previous
instances from literature. This improvement makes our methodology a viable
candidate to solve real-life network design problems.

The BRKGA initial population of feasible solutions is generated by a con-
structive heuristic, called reduced-cost heuristic, which uses reduced-cost infor-
mation of the edges to iteratively select first stage edges. The second stage edges
are chosen by solving each scenario with a minimum spanning tree algorithm.
To intensify the search, the BRKGA explores the population diversity by apply-
ing selective pressure under an evolutive environment. A set of instances from
literature (Bomze et al. [2010]) were used in the computational experiments to

compare our results with known optimal solutions. Moreover, our methodology
effectively solved the benchmark set of instances from the 11th DIMACS chal-
lenge1.

This paper is organized as follows. In Section 2 we briefly discuss the STP.
Section 3 explains the SSTP and the branch-and-cut algorithm from Bomze
et al. [2010]. Section 3 also details the proposed methodologies (reduced-cost
heuristic and BRKGA). Section 4 shows the computational experiments with
instances from literature and from the DIMACS benchmark. The final remarks
are presented in Section 5.

2 The Steiner Tree Problem (STP)

In this section we formally describe the Steiner Tree problem and two algorithms
to solve it. The first algorithm is a Branch-and-Cut algorithm that solve the STP
to optimality. Unfortunately the exact approach can not be applied to large
instances in a reasonable running time, therefore we have the second algorithm
which is a fast 2-approximation heuristic based on minimum spanning tree.

The STP can be described as follows. Let I = (G,C,R) be an instance for the
STP, where G = (V,E) is a graph with |V | = n and |E| = m, C = {ce : e ∈ E} is
the edges cost set, and R ⊆ V is the terminal set. A set of edges T , corresponding
to a tree in G that connects the nodes in R, is a the solution for this problem.
Thus, the STP is the problem of determining a subset of edges T ⊆ E, where T
spans R, such that the cost

∑
e∈T ce is minimized.

2.1 Branch-and-Cut Algorithm

This algorithm is based on the ILP formulation presented by Bomze et al. [2010].
This formulation uses a directed graph, so for each original undirected edge
e = {i, j} ∈ E, we create arcs (i, j) and (j, i). Let A be the set of all arcs,
(i, j) ∈ A be a directed arc from i to j, and zij be a variable that indicates if
arc (i, j) is in the solution. Defining r ∈ R as an arbitrary terminal node, and
Vr = V \ {r}, we consider the following formulation:

min
∑

e={i,j}∈E

(zij + zji)ce

s.t .
z(δ−(S)) ≥ 1, ∀S ⊆ Vr, S ∩R 6= ∅

zij ∈ {0, 1}, ∀(i, j) ∈ A.

The number of constraints in this formulation is exponential, thus we apply
the branch-and-cut strategy. First we consider a relaxed form of the problem by
removing the constraints, both for connectivity and integrality. Then, for each
solution found for the relaxed formulation, we search for violated constraints.

1 http://dimacs11.cs.princeton.edu/

To find a violated constraint we use the following algorithm. Given a solution
z for the relaxed formulation, we associate a capacity of value zij to each arc
(i, j). Then, for each terminal t ∈ R we solve a minimum cut problem, and let
S ⊆ Vr be the minimum cut between t and the root r. If z(δ−(S)) < 1, we
remove this solution adding the constraint z(δ−(S)) ≥ 1 to the formulation, and
the new problem is optimized. If there are no more violated cuts in the current
node of the branch-and-bound tree, the algorithm branches and the process is
repeated in the following nodes.

This branch-and-cut algorithm finds the optimal solution to the STP, but in
reasonable time, can be applied only to moderate-size instances.

2.2 MST-Approx

A fast algorithm to solve the STP is essential to solve the SSTP, because only to
find the cost of a SSTP solution, it is necessary to solve several STP instances,
one for each scenario. Thus, we use the minimum spanning tree 2-approximation
algorithm to the STP (Vazirani [2003]), which we call MST-Approx.

The first step is to compute the shortest path between all pairs of terminals.
Let Pij ⊆ E be the shortest path between terminals i and j. Then we create a
new complete graph G′ = {R,E′} where each (i, j) from E′ represents the path
Pij and has cost c′ij =

∑
e∈Pij ce. The graph G′ is called a metric-completion of

G restricted to R. The minimum paths represented in the edges of the graph G′

are not necessarily disjoint in the original graph G.
The second step is to compute a minimum spanning tree T ′ of G′. Then, a

Steiner tree T is built for G based on T ′. For each edge (i, j) ∈ T ′ we add to T
all edges in Pij , except for repeated edges and for those that may form cycles.
All steps of this algorithm can be performed in polynomial time.

3 Stochastic Steiner Tree Problem

In this section we describe the Two-Stage Stochastic Steiner Tree problem (SSTP)
and show some approaches to solve it.

We use a similar notation from Bomze et al. [2010]. Let I = (G,C, P,Q, r,R)
be an instance for the SSTP, where G = (V,E) is a graph with |V | = n and |E| =
m, C = {ce : e ∈ E} is the edges cost set for the first stage, and P = {p1, . . . , pk}
is the set of occurrence probability for the scenarios. Also, Q = {Q1, . . . , Qk},
where Ql = {qle : e ∈ E} is the edge cost set in the l-th scenario, and r is the
root node. Defining Vr = V \ {r}, we have R = {R1, . . . , Rk}, where Rl ⊆ Vr is
the terminal set in the l-th scenario.

We denote by E0 the set of edges purchased in the first stage, and by El

the set of additional edges purchased under scenario l. Thus, the SSTP is the
problem of determining a subset of edges E0 ⊆ E to be purchased in the first
stage, and the subsets of edges El, for l = 1, . . . , k, where E0∪El spans Rl∪{r},
such that the expected cost defined as

∑
e∈E0

ce+
∑k

l=1 pl
∑

e∈El q
l
e is minimized.

Bomze et al. [2010] presents a Two-Stage Branch-and-Cut framework for the
Stochastic Steiner Tree Problem, that consists of a semi-directed ILP model, that
is stronger than the undirected ILP model proposed by Gupta et al. [2007]. To the
best of our knowledge, Bomze et al. [2010] were the first to report experimental
results about the SSTP.

3.1 Buy-None Heuristic

The first and most trivial heuristic for the SSTP, called Buy-None, consists of
letting all edges to be bought in the second stage of the problem. To solve each
scenario of the second stage, it is necessary to solve a STP, which can be done
optimally or approximately.

When the second stage scenarios are solved optimally, we have that the gap
between this solution cost and the SSTP optimal cost is upper bounded by the
highest inflation α of the edges. More formally, let I be an instance for the SSTP
and OPT (I) be the cost of an optimal solution for I. Also, let buyNoneExact(I)
be the cost of a solution returned by Buy-None to solve I, with the second stage
scenarios solved by an exact STP algorithm. We have that buyNoneExact(I) ≤
(1 + α)OPT (I).

Unfortunately, solving the second stage optimally is practical only for moderate-
size instances. Therefore, it is necessary to use a fast STP algorithm, like the
MST-Approx. Also, using the Buy-None approach with a β-approximation for
solving the STP, we obtain a β(1 +α)-approximation. Let buyNoneMST (I) be
the cost of a solution returned by Buy-None to solve I, with the second stage
scenarios solved by MST-Approx. Since MST-Approx is a 2-approximation for
STP, we have that buyNoneMST (I) ≤ 2buyNoneExact(I) ≤ 2(1 +α)OPT (I).

3.2 Reduced-Cost Heuristic

Our second heuristic, called Reduced-Cost, consists of estimating the effects of
adding a new edge to the first stage of a partial solution, and actually adding
only those edges which reduce the estimated cost of this solution, i.e. the edges
with negative reduced cost. The algorithm repeats this process until no more
profitable edges are found or a time limit is reached.

To estimate the cost of a partial solution, for each scenario we set the cost of
edges added in the first stage to zero, and use the MST-Approx algorithm to find
a Steiner Tree to that scenario. Let I be an instance for the SSTP, and S ⊆ E
be a set of edges selected for the first stage of a solution. We define MC(I, S)
as the cost to solve I, when S is bought in the first stage and the second stage
scenarios are solved using the MST-Approx algorithm.

The Reduced-Cost heuristic first estimates the cost of MC(I, ∅), i.e. a so-
lution in which no edges are bought in the first stage. This step is exactly the
solution of Buy-None heuristic. Then, the algorithm estimates the reduced cost
rc(I, S, e) = MC(I, S ∪ {e}) −MC(I, S) for each edge e ∈ E, in an arbitrary
order. When an edge with negative reduced cost is found, it is added to S. The

algorithm also stops this process if, to a given partial solution S, the reduced
cost rc(I, S, e) > 0 for all edges e ∈ E, or it reaches a time limit.

The algorithm then verifies if removing any of the edges previously selected
reduces the cost of the current solution, i.e. for all edges e ∈ S, if MC(I, S\{e})−
MC(I, S) < 0, then the algorithm removes e from S. This process is repeated
until, after running over all edges in S no modification was done. The result is
a set S of edges to be bought on first stage.

3.3 Biased Random-Key Genetic Algorithm (BRKGA)

The BRKGA, presented by Gonçalves [2011], is a general search metaheuristic
based in genetic algorithms, where a population of individuals evolves through
the Darwinian principle of survival of the fittest. Each individual of this popu-
lation is a chromosome that is composed by a set of uniformly drawn random
keys (alleles) that represent a solution with a fitness.

Two key features distinguish BRKGA from traditional genetic algorithms
[1989]:

1. A chromosome encoding that adopts a vector with m uniformly drawn ran-
dom keys (alleles) over the interval [0, 1], where m depends on the instance
of the optimization problem;

2. For intensification, it uses parameterized uniform crossover [1991]. For diver-
sification, it substitutes the mutation operator on chromosomes with newly
introduced mutants, defined as m-long vectors of random keys.

The traditional BRKGA initializes the population with p randomly gener-
ated chromosomes, each having m random keys. The population evolves through
several generations, each one composed of the following steps:

1. Evaluate the fitness for each individual.

2. Produce the next generation population:

(a) Select the best pe individuals from the current population, as they will
form the elite set.

(b) Generate pm new mutants.

(c) Produce new chromosomes through uniform crossovers between two in-
dividuals from the current generation, one from the elite set and another
from the non-elite set. Each gene has probability ρe of being inherited
from the elite parent.

The population size p, elite set size pe, number of mutants pm and the elite
crossover probability ρe are the BRKGA parameters.

To use this metaheuristic as a framework to an optimization problem we
need the following steps: define the number of genes in a chromosome, define a
decoder which maps a chromosome into a solution, and define the fitness value
of the chromosome, which will measure the quality of the solution.

0 1
... ...

kj

1
... ...

2 3 m

1 2 3 m−1 m
c c c c c

q
j

q
j j

q
j

m−1
q
j

q

...

Fig. 3. The chromosome structure.

Chromosome. The chromosome, for an instance I of SSTP with m edges and
k scenarios, is a vector of size (k+ 1) ·m, where the first m positions are related
to the first-stage edges, and the k · m subsequent positions correspond to the
edges of all k scenarios. Figure 3 illustrates a chromosome decomposition.

Initial Population In the traditional BRKGA the initial population are com-
posed of p chromosomes made of uniformly drawn random keys (alleles), however,
is possible to manipulate this first population by introducing some chromosomes
that represent some solutions obtained from other methods. It can be done with
the aim to include some previous knowledge about the problem, that can help in
the search for better solutions. Usually this strategy reduce the BRKGA conver-
gence time. In our approach we introduce, in the first population, a chromosome
that represent the Buy-None Heuristic solution and a chromosome that represent
the best solution found by the Reduced-Cost Heuristic.

Decoder. The role of the decoder is to translate a given chromosome to a
feasible solution. Let X be a chromosome. Initially our decoder look at the first
m positions of X and, if X[e] ≤ 0.05 then include the edge e in the first stage.
For each edge included in the first stage, its value in all k scenarios are set equal
to zero.

For the decoding of the second stage, the chromosome keys of a given scenario
l are used as perturbations of the corresponding edge costs. The perturbed cost
of an edge e will be q′le = (0.5 + qle) · ble, where ble is the introduced perturbation.
If an edge e was chosen for the first stage, then q′le = 0. With these perturbed
costs, each scenario is solved using the MST-Approx.

Figure 4(a-c) illustrates the advantage of using perturbed costs in the decod-
ing process. Consider a single scenario, where the edge set is E = {a, b, c, d, e, f},
with edge costs C = {9, 5, 9, 5, 5, 9}. Figure 4.b shows a sub-optimal solution,
with total cost 18, returned by the MST-Approx using the original edge costs.
Now, assuming a chromosome X = [0.7, 0.4, 0.5, 0.5, 0.3, 0.6] and computing
the edge cost using q′le = (0.5 + qle) · ble, the new edge costs will be C ′ =

{10.8, 4.5, 9, 5, 4, 9, 9}. With these costs the MST-Approx returns the optimal
solution (Figure 4.c) with real cost 15.

f

d

a

e

c

b
5 5

9

5

9

9 9

9.9

10
.8

5

4.
5

4

(a) (b) (c)

Fig. 4. Example of improved solution.

Combining the set of edges used in each scenario with the edges selected in
the first stage results in a complete SSTP solution. Given we have a minimization
problem, the solution’s fitness is determined as the inverse of its expected cost.

4 Results

This section shows our computational experiments with the BRKGA using two
benchmark sets of instances. The first benchmark contains 24 instances (5-50
scenarios, 80-274 edges, α = 0.5), extracted from the work of Bomze et al.
[2010], for which optimal solutions are known for all except one instance. The
second benchmark is part of the 11th DIMACS Implementation Challenge [2014].
This benchmark is divided into four types of instances (K, P, Lin and Wrp),
totaling 560 instances (5-1000 scenarios, 64-613 edges, α = 1.0). To the best of
our knowledge, this is the first work reporting results for this benchmark.

Our computational experiments were executed on an Intel Xeon CPU E3-
1230 V2, 3.30GHz, with 32 GB RAM, under Ubuntu 14.04. All codes were
implemented in C++ using the Lemon Graph Library [2014] as the framework
for graph data structures. A one hour limit of computational time was adopted as
stopping criteria, which includes a 30 minutes limit for the reduced cost heuristic.

Table 4 shows the parameter settings for the BRKGA. It should be noticed
that the BRKGA population size is within the range of [10, 100] individuals,
and varies with respect to the instance size. All the remaining parameters values
were suitably adjusted after exhaustive experimentation.

4.1 Results for Benchmark 1

Table 4.1 shows results for the instances previously solved by an exact algorithm
from Bomze et al. [2010]. In their paper, only one instance (lin05 160 269, k =

Table 1. BRKGA parameters setting.

population size p = max

[
10,min

[
100,

⌈ γ

k|E|

⌉]]
population size multiplier γ = 2, 812, 500

elite set size pe = d0.1pe

number of mutants pm = d0.2pe

elite crossover probability ρe = 0.825

20) remained without an optimal solution, given the time limit of two hours.
In this case, the authors reported the best feasible solution obtained by their
branch-and-cut algorithm, which is also replicated in Table 4.1.

The BRKGA has shown a good performance for instances with known op-
timums, achieving small optimality gaps, with an average of 0.47%. For the
instance with unknown optimum, the BRKGA has found a solution with 4.36%
lower cost than the previous best. Within the one hour limit, the BRKGA re-
quired in average 943 seconds to deliver its best solution, which indicates an
overall fast convergence of our approach.

4.2 Results for Benchmark 2

Table 4.2 shows summarized results2 for the DIMACS benchmark, displaying
average values for each one of the four instance types and for each considered
number of scenarios. The exhibited values concern BRKGA solutions with re-
spect to their average cost reduction from reference solutions and their average
execution time. Without the knowledge of the optimal solutions, we have used
the buy none solutions as references to determine the cost reduction obtained by
the BRKGA. This comparison informs how much would a decision maker gain
by anticipating future demands in his network, thus buying cheaper edges in the
present.

The results show that our methodology considerably reduces the costs of
instances from diverse types and number of scenarios. The overall average cost
reduction achieved by BRKGA, compared to the buy none solutions, was 3.42%.
It is noticeable that the cost reduction decreases when more scenarios are present.
Two possible explanations for this are: (i) the instances are harder to solve, thus
longer execution times are necessary to improve the results; (ii) the benefit of
acquiring an edge in the first stage dissolves among the scenarios. The first ex-
planation is corroborated by the average execution times exhibited in Table 4.2.
The best results attained by BRKGA gets closer to the one hour limit as more

2 Detailed results can be found in: http://www.ic.unicamp.br/˜fusberti/sstp/

Table 2. BRKGA performance for instances with known optimums.

BRKGA

instance k |R| opt cost gap (%) time

lin01 53 80 5 4.6 797 797 0 193.7
lin01 53 80 10 4.2 633.2 636 0.44 1027.4
lin01 53 80 20 4.6 753.9 754.4 0.07 2.2
lin01 53 80 50 4.7 768.9 769 0.01 1456.3
lin02 55 82 5 4.6 476.2 476.2 0 0.3
lin02 55 82 10 5.3 739.1 739.1 0 2529
lin02 55 82 20 5.3 752.2 752.2 0 4.6
lin02 55 82 50 5.1 732.6 732.8 0.03 803
lin03 57 84 5 4.4 653 655.2 0.34 0.3
lin03 57 84 10 5.2 834.7 840.6 0.71 38.4
lin03 57 84 20 5.8 854.9 855.5 0.07 583.4
lin03 57 84 50 5.5 895.7 896 0.03 502

lin04 157 266 5 10.4 1922.1 1923 0.05 44
lin04 157 266 10 9.8 1959.1 1972.4 0.68 1161.6
lin04 157 266 20 9.3 1954.9 1981.2 1.35 3125.3
lin04 157 266 50 9.8 2097.7 2172.5 3.57 2816.8
lin05 160 269 5 10.2 2215.5 2224.9 0.42 20.2
lin05 160 269 10 11.4 2210.2 2224.3 0.64 160.5
lin05 160 269 20 11.1 2412.2* 2307 -4.36* 1884.7
lin05 160 269 50 11.6 2297 2301.6 0.2 1645.4
lin06 165 274 5 11 1975.8 1986.9 0.56 411.9
lin06 165 274 10 10.6 1918.7 1935.1 0.85 389.4
lin06 165 274 20 14 2457.6 2463.9 0.26 702.9
lin06 165 274 50 12.6 2186.8 2196 0.42 3122.9

* refers to the best solution obtained by Bomze et al. [2010].
k – number of scenarios.

|R| – average number of terminals per scenario.
opt – optimum cost [2010].
cost – BRKGA best solution cost.
gap – optimality gap.
time – BRKGA execution time (sec) to obtain the best solution.

scenarios are introduced. This indicates that our results can be further improved
with longer execution times. Figure 5 clearly shows this ascending/descending
behaviors of execution time and cost decrease, respectively, with the inclusion
of more scenarios.

Table 3. Summarized results for DIMACS benchmark.

Instance Type
K Lin P Wrp

k δc (%) time δc (%) time δc (%) time δc (%) time

5 6.93 326.45 6.64 1354.54 5.50 896.61 3.34 963.04
10 5.90 408.86 4.88 900.92 4.81 448.41 2.86 1075.23
20 5.03 827.31 4.78 2046.42 4.55 1623.28 2.79 1689.66
50 3.90 2045.47 4.19 2836.25 3.62 1798.56 2.71 2198.19
75 4.02 2027.70 3.73 3368.88 3.70 2109.76 2.67 2657.79

100 3.97 2386.38 3.32 3116.50 3.73 2561.77 2.64 2828.89
150 3.77 2803.33 3.20 3317.81 3.91 3371.17 2.62 3274.75
200 3.80 3293.86 2.99 3293.12 3.69 3456.40 2.58 3341.13
250 3.89 3180.44 2.97 3390.52 3.68 3567.79 2.53 3452.78
300 3.73 3456.86 2.76 3440.17 3.68 3490.74 2.50 3531.54
400 3.52 3499.44 2.55 3532.98 3.61 3554.53 2.46 3545.27
500 3.56 3537.45 2.38 3541.23 3.49 3551.97 2.43 3571.08
750 3.41 3525.27 2.16 3583.80 3.06 3558.99 2.37 3504.00

1000 3.22 3559.16 1.96 3575.84 2.99 3567.02 2.34 3544.70

k – number of scenarios.
time – average execution time to achieve the best solution.
δc – average cost reduction compared to the buy none solutions.

5 Final Remarks

This paper proposed a heuristic methodology for the stochastic Steiner tree
problem that is capable of solving large instances within reasonable execution
times. This task was achieved through a biased random-key genetic algorithm
(BRKGA), for which we have designed efficient chromosome representations and
solution evaluation techniques. Our implementation was able to solve instances
up to 1000 scenarios and 613 edges, which represents a major increase on the
sizes of the instances tackled in literature.

Computational experiments were performed with 24 small instances, previ-
ously solved by a state-of-the-art exact algorithm [2010]. The results have shown
that the BRKGA achieved near optimal solutions, under one hour of computa-
tional time, giving an average gap of less than 0.5%. Additional experiments
with the DIMACS benchmark, which complies 560 instances, confirmed the ro-
bustness of our approach. For these instances, the BRKGA achieved 3.42% of

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900 1000
2.5

3

3.5

4

4.5

5

5.5

tim
e

(s
ec

)

co
st

de
cr

ea
se

(%
)

scenarios

time
cost decrease

Fig. 5. The effects of the number of scenarios on the BRKGA results.

cost reduction from reference solutions for which no edge is bought in the first
stage.

From the computational tests and the overall quality of the solutions obtained
through our approach, it follows that the BRKGA is an effective methodology,
capable of solving hard instances that may arise from real-life network design
problems.

References

[2014] 11th DIMACS Implementation Challenge in Collaboration with ICERM:
Steiner Tree Problems. http://dimacs11.cs.princeton.edu/. Last access in November
2014.

[1988] Birge, J.R., Louveaux, F.: A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research 34, 384392 (1988)

[2010] Bomze, Immanuel M. and Chimani, Markus and Jnger, Michael and Ljubic,
Ivana and Mutzel, Petra and Zey, Bernd.: Solving Two-Stage Stochastic Steiner Tree
Problems by Two-Stage Branch-and-Cut. LNCS 6506, ISAAC (1), 427–439(2010)

[1967] Cavalli-Sforza, L. L. and Edwards, A.W.: Phylogenetic analysis. Models and
estimation procedures. American Journal of Human Genetics, 19(3), 233–57 (1967)

[1989] Goldberg, David E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co. Inc. 1st(1989)

[2011] Gonçalves, José Fernando and Resende, Mauricio G.: Biased Random-key Ge-
netic Algorithms for Combinatorial Optimization. Journal of Heuristics, 17, 487–525
(2011)

[2007] Gupta, Anupam and Ravi, R. and Sinha, Amitabh: LP Rounding Approxima-
tion Algorithms for Stochastic Network Design. Math. Oper. Res. 32, 345–364 (2007).

[1993] Laporte, G. and Louveaux, F.: The integer L-shaped method for stochastic
integer programs with complete recourse. per. Res. Lett. 13, 133142 (1993)

[2014] Lemon – Graph Library. http://lemon.cs.elte.hu/trac/lemon/. Last access in
November 2014.

[1990] Lengauer, Thomas: Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley & Sons, Inc., New York (1990)

[1984] Magnanti, T. L. and Wong, R. T.: Network Design and Transportation Plan-
ning: Models and Algorithms. Transportation Science, 18(1), 1–55 (1984)

[2006] Swamy, Chaitanya and Shmoys, David B.: Approximation Algorithms for 2-
stage Stochastic Optimization Problems. SIGACT News,37, 33–46 (2006)

[1969] Van Slyke R. M. and Roger Wets.: L-Shaped Linear Programs with Applica-
tions to Optimal Control and Stochastic Programming. SIAM Jornal on Applied
Mathematics, Vol.17 No.4, 638–663 (1969)

[2003] V.V. Vazirani: Approximation Algorithms Springer
[1991] W. Spears, de K. Jong.: On the virtues of parameterized uniform crossover In

Proceedings of the Fourth International Conference on Genetic Algorithms (1991),
pp. 230–236

