PAA - Aula 17 21

Programação Dinâmica, Conjunto Independente de Peso Máximo em Caminhos

Vamos começar a estudar a técnica de projeto de algoritmos

chamada Programação Dinâmica.

Para tanto, vamos abordar um problema bastante particular e didático,

o Conjunto Independente de Peso Máximo em Grafos Caminhos.

Entrada: um grafo caminho $\int_{\mathbb{R}^2} (V_i E)$ com

- o pesos não negativos nos vértices, 🧀 : V → IR+
- Um grafo caminho é um grafo conexo sem bifurcações, ou seja,
 - o grau de todos os vértices é dois,
 - exceto pelos dois vértices dos extremos que têm grau um.

Saída: um conjunto independente de peso máximo.

- Um conjunto é independente se nenhum par de vértices é adjacente,
 - o i.e., se nenhum par do conjunto tem aresta em comum.



Exemplo: Caminho com quatro vértices e pesos 1, 4, 5, 4

Antes de projetar um algoritmo usando a nova técnica,

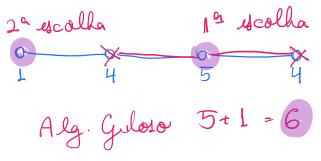
- vamos testar as técnicas que já conhecemos,
 - o para entender as dificuldades do problema
 - e limitações das técnicas.

Abordagem por força bruta:

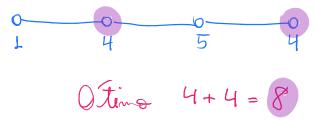
- Vamos enumerar todos os 2 diferentes subconjuntos,
 - o descartar todos os que tem dois vértices adjacentes,
 - o e encontrar o de peso máximo dentre os que sobraram
- Vantagem: Esta abordagem encontra o resultado correto.
- Desvantagem: Ela leva tempo (2ⁿ)

Abordagem gulosa:

- Dentre várias possíveis, uma ideia é escolher
 - o sempre o vértice de maior peso para fazer parte da solução.

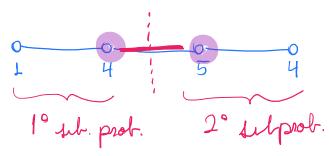


- Contra-exemplo: escolhendo o vértice de peso 5 do grafo anterior
 - o ficamos impossibilitados de escolher seus vizinhos.
 - Com isso, nossa solução terá peso
- Por outro lado o ótimo teria peso



Abordagem por divisão e conquista:

- Dividir o caminho ao meio parece uma boa ideia
 - o (semelhante a dividir um vetor ao meio).
- Então podemos resolver recursivamente cada subproblema.



- Contra-exemplo: no grafo anterior a solução ótima
 - o do primeiro subcaminho (4,4) of 4
 - e a do segundo subcaminho (5,4)
- Observe que não parece fácil combinar essas soluções,
 - o já que elas têm vértices adjacentes.

Subestrutura ótima:

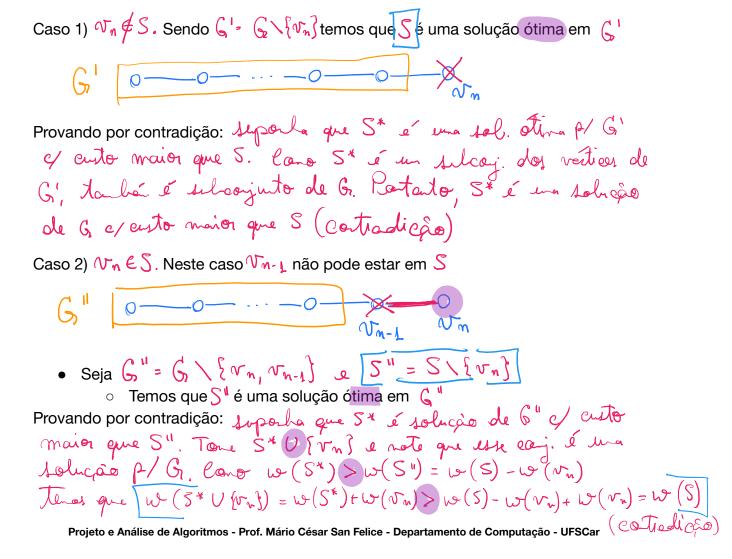
A parte central do projeto de algoritmos utilizando programação dinâmica

- é encontrar a subestrutura ótima das soluções do problema.
- Isso significa mostrar como uma solução ótima
 - é composta de soluções ótimas para subproblemas menores.
- A princípio isso serve para entender melhor o problema
 - o e reduzir o espaço soluções de uma busca exaustiva,
 - mas o impacto no tempo de execução pode ser muito maior.

No problema do Conjunto Independente de Peso Máximo em Grafos Caminhos,

- imaginamos uma solução ótima
 - e consideramos o último vértice ndo grafo caminho

Então analisamos por casos.



De posse da subestrutura ótima, conseguimos descrever uma solução ótima para 6

- - o e {VnJV uma solução ótima em ("= G \ {Vn, Vn, I
- Não sabemos qual dos dois casos se aplica,
 - mas isso nos sugere o seguinte algoritmo recursivo.

Embora correto, esse algoritmo leva tempo exponencial no tamanho da entrada.

- Quiz: Tentem escrever a recorrência de tempo do mesmo
 - o e resolvê-la usando o método da substituição.
- Dica: podem simplificar a recorrência, já que basta um limitante inferior
 - o para mostrar que o algoritmo leva tempo exponencial.
- O tempo deste algoritmo é "parecido" com os números de Fibonacci.

Algoritmo de programação dinâmica:

Da subestrutura ótima temos que uma solução ótima para G é a melhor entre:

- o uma solução ótima em G¹ = ⟨⟨√√√⟩
- ∘ $\{ \nabla_n \} \cup \text{uma solução ótima em G}^{"} = G \setminus \{ \nabla_n | \nabla_{n-1} \}$

Dessa relação segue a recorrência: $A[i] = max \{ A[i-1], A[i-2] + \omega(v_i) \}$

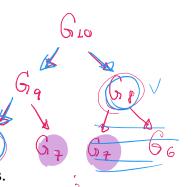
• sendo Alijo valor do ótimo para o caminho com os i primeiros vértices.

Observem o padrão de formação dos subproblemas.

- Apenas vértices do extremo direito do caminho são removidos.
 - Assim, cada subproblema é um prefixo do caminho.
- - o temos $\Theta(w)$ diferentes subproblemas.

De fato, o algoritmo recursivo gasta tempo exponencial

- apenas por ficar recalculando os mesmos subproblemas.
- Podemos torná-lo polinomial, se guardarmos numa tabela
 - o valor de um subproblema na primeira vez que o calcularmos
 - o e verificarmos essa tabela antes de recalcularmos um subproblema.
- Essa técnica é conhecida como memorização (memoization)
 - e tem uma relação próxima com programação dinâmica.



Vamos finalmente construir nosso algoritmo iterativo de programação dinâmica.

- Para tanto vamos preencher o vetor Alde baixo para cima,
 - seguindo a regra da recorrência $A[i] = \max\{A[i-1], A[i-2] + \omega(v_i)\}$

$$O(n) = 0$$

$$A[1] = \omega(v_1)$$

$$= 0$$

$$A[i] = \max \{A[i-1], A[i-2] + \omega(v_i)\}$$

$$devolva A[n]$$

Corretude: Segue da subestrutura ótima e pode ser provada por indução.

Eficiência: O(n) pois o algoritmo só tem um laço principal

e realiza um número de operações constante dentro deste.

Reconstruindo a solução:

Embora nosso algoritmo encontre o valor da solução ótima,

- o ele não obtém a solução em si.
- Uma opção é modificar o algoritmo para que
 - o ele armazene a solução dos subproblemas,
 - o ao menos daqueles que ainda podem fazer parte da solução ótima.
- Mas isso não costuma ser eficiente em questão de memória,
 - o especialmente em algoritmos de maior dimensão
 - e com recorrências complexas.

Por isso, em geral, o mais eficiente é reconstruir a solução

- o fazendo engenharia reversa no vetor de soluções.
- Para tanto vamos olhar novamente para nossa recorrência:

- e observar que um vértice $\sqrt{\ }$ está na solução para $\$ se, e somente se,
 - (Vi)+ custo da solução para (vi-1) custo da solução para (vi-1)
- sendo $\oint_{\vec{a}}$ o prefixo de G com os primeiros \vec{a} vértices.

Assim, vamos percorrer o vetor $\{(1)$ do fim para o início e, em cada posição,

- verificamos qual foi a escolha que o algoritmo fez (usando a recorrência).
 - Se for o caso, adicionamos o vértice corrente à solução
 - o e avançamos no vetor para a posição adequada.
- Para ficar mais claro, considere os seguintes exemplos e pseudocódigo
 - o supondo que o vetor A[] foi preenchido pelo algoritmo eagitud.

