
Exercises
5.1. Consider the following graph.
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(a) What is the cost of its minimum spanning tree?
(b) How many minimum spanning trees does it have?
(c) Suppose Kruskal’s algorithm is run on this graph. In what order are the edges added to the

MST? For each edge in this sequence, give a cut that justifies its addition.

5.2. Suppose we want to find the minimum spanning tree of the following graph.
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(a) Run Prim’s algorithm; whenever there is a choice of nodes, always use alphabetic ordering
(e.g., start from node A). Draw a table showing the intermediate values of the cost array.

(b) Run Kruskal’s algorithm on the same graph. Show how the disjoint-sets data structure
looks at every intermediate stage (including the structure of the directed trees), assuming
path compression is used.

5.3. Design a linear-time algorithm for the following task.

Input: A connected, undirected graph G.
Question: Is there an edge you can remove from G while still leaving G connected?

Can you reduce the running time of your algorithm to O(|V |)?
5.4. Show that if an undirected graph with n vertices has k connected components, then it has at

least n− k edges.
5.5. Consider an undirected graph G = (V,E) with nonnegative edge weights we ≥ 0. Suppose that

you have computed a minimum spanning tree of G, and that you have also computed shortest
paths to all nodes from a particular node s ∈ V .
Now suppose each edge weight is increased by 1: the new weights are w′

e = we + 1.

(a) Does the minimum spanning tree change? Give an example where it changes or prove it
cannot change.

(b) Do the shortest paths change? Give an example where they change or prove they cannot
change.

5.6. Let G = (V,E) be an undirected graph. Prove that if all its edge weights are distinct, then it has
a unique minimum spanning tree.
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5.7. Show how to find the maximum spanning tree of a graph, that is, the spanning tree of largest
total weight.

5.8. Suppose you are given a weighted graph G = (V,E) with a distinguished vertex s and where
all edge weights are positive and distinct. Is it possible for a tree of shortest paths from s and
a minimum spanning tree in G to not share any edges? If so, give an example. If not, give a
reason.

5.9. The following statements may or may not be correct. In each case, either prove it (if it is cor-
rect) or give a counterexample (if it isn’t correct). Always assume that the graph G = (V,E) is
undirected. Do not assume that edge weights are distinct unless this is specifically stated.

(a) If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, then this edge
cannot be part of a minimum spanning tree.

(b) If G has a cycle with a unique heaviest edge e, then e cannot be part of any MST.
(c) Let e be any edge of minimum weight in G. Then e must be part of some MST.
(d) If the lightest edge in a graph is unique, then it must be part of every MST.
(e) If e is part of some MST of G, then it must be a lightest edge across some cut of G.
(f) If G has a cycle with a unique lightest edge e, then e must be part of every MST.
(g) The shortest-path tree computed by Dijkstra’s algorithm is necessarily an MST.
(h) The shortest path between two nodes is necessarily part of some MST.
(i) Prim’s algorithm works correctly when there are negative edges.
(j) (For any r > 0, define an r-path to be a path whose edges all have weight < r.) If G contains

an r-path from node s to t, then every MST of G must also contain an r-path from node s to
node t.

5.10. Let T be an MST of graph G. Given a connected subgraph H of G, show that T ∩H is contained
in some MST of H .

5.11. Give the state of the disjoint-sets data structure after the following sequence of operations, start-
ing from singleton sets {1}, . . . , {8}. Use path compression. In case of ties, always make the lower
numbered root point to the higher numbered one.

union(1, 2),union(3, 4),union(5, 6),union(7, 8),union(1, 4),union(6, 7),union(4, 5),find(1)

5.12. Suppose you implement the disjoint-sets data structure using union-by-rank but not path com-
pression. Give a sequence of m union and find operations on n elements that take Ω(m logn)
time.

5.13. A long string consists of the four characters A,C,G, T ; they appear with frequency 31%, 20%, 9%,
and 40%, respectively. What is the Huffman encoding of these four characters?

5.14. Suppose the symbols a, b, c, d, e occur with frequencies 1/2, 1/4, 1/8, 1/16, 1/16, respectively.

(a) What is the Huffman encoding of the alphabet?
(b) If this encoding is applied to a file consisting of 1,000,000 characters with the given frequen-

cies, what is the length of the encoded file in bits?

5.15. We use Huffman’s algorithm to obtain an encoding of alphabet {a, b, c}with frequencies fa, fb, fc.
In each of the following cases, either give an example of frequencies (fa, fb, fc) that would yield
the specified code, or explain why the code cannot possibly be obtained (no matter what the
frequencies are).
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(a) Code: {0, 10, 11}
(b) Code: {0, 1, 00}
(c) Code: {10, 01, 00}

5.16. Prove the following two properties of the Huffman encoding scheme.

(a) If some character occurs with frequency more than 2/5, then there is guaranteed to be a
codeword of length 1.

(b) If all characters occur with frequency less than 1/3, then there is guaranteed to be no
codeword of length 1.

5.17. Under a Huffman encoding of n symbols with frequencies f1, f2, . . . , fn, what is the longest a
codeword could possibly be? Give an example set of frequencies that would produce this case.

5.18. The following table gives the frequencies of the letters of the English language (including the
blank for separating words) in a particular corpus.

blank 18.3% r 4.8% y 1.6%
e 10.2% d 3.5% p 1.6%
t 7.7% l 3.4% b 1.3%
a 6.8% c 2.6% v 0.9%
o 5.9% u 2.4% k 0.6%
i 5.8% m 2.1% j 0.2%
n 5.5% w 1.9% x 0.2%
s 5.1% f 1.8% q 0.1%
h 4.9% g 1.7% z 0.1%

(a) What is the optimum Huffman encoding of this alphabet?
(b) What is the expected number of bits per letter?
(c) Suppose now that we calculate the entropy of these frequencies

H =

26∑

i=0

pi log
1

pi

(see the box in page 150). Would you expect it to be larger or smaller than your answer
above? Explain.

(d) Do you think that this is the limit of how much English text can be compressed? What
features of the English language, besides letters and their frequencies, should a better
compression scheme take into account?

5.19. Entropy. Consider a distribution over n possible outcomes, with probabilities p1, p2, . . . , pn.

(a) Just for this part of the problem, assume that each pi is a power of 2 (that is, of the form
1/2k). Suppose a long sequence of m samples is drawn from the distribution and that for all
1 ≤ i ≤ n, the ith outcome occurs exactly mpi times in the sequence. Show that if Huffman
encoding is applied to this sequence, the resulting encoding will have length

n∑

i=1

mpi log
1

pi
.
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(b) Now consider arbitrary distributions—that is, the probabilities pi are not restricted to pow-
ers of 2. The most commonly used measure of the amount of randomness in the distribution
is the entropy

n∑

i=1

pi log
1

pi
.

For what distribution (over n outcomes) is the entropy the largest possible? The smallest
possible?

5.20. Give a linear-time algorithm that takes as input a tree and determines whether it has a perfect
matching: a set of edges that touches each node exactly once.
A feedback edge set of an undirected graph G = (V,E) is a subset of edges E ′ ⊆ E that intersects
every cycle of the graph. Thus, removing the edges E ′ will render the graph acyclic.
Give an efficient algorithm for the following problem:

Input: Undirected graph G = (V,E) with positive edge weights we

Output: A feedback edge set E ′ ⊆ E of minimum total weight
∑

e∈E′ we

5.21. In this problem, we will develop a new algorithm for finding minimum spanning trees. It is based
upon the following property:

Pick any cycle in the graph, and let e be the heaviest edge in that cycle. Then there is
a minimum spanning tree that does not contain e.

(a) Prove this property carefully.
(b) Here is the new MST algorithm. The input is some undirected graph G = (V,E) (in adja-

cency list format) with edge weights {we}.

sort the edges according to their weights
for each edge e ∈ E, in decreasing order of we:

if e is part of a cycle of G:
G = G− e (that is, remove e from G)

return G

Prove that this algorithm is correct.
(c) On each iteration, the algorithm must check whether there is a cycle containing a specific

edge e. Give a linear-time algorithm for this task, and justify its correctness.
(d) What is the overall time taken by this algorithm, in terms of |E|? Explain your answer.

5.22. You are given a graph G = (V,E) with positive edge weights, and a minimum spanning tree
T = (V,E′) with respect to these weights; you may assume G and T are given as adjacency lists.
Now suppose the weight of a particular edge e ∈ E is modified from w(e) to a new value ŵ(e). You
wish to quickly update the minimum spanning tree T to reflect this change, without recomputing
the entire tree from scratch. There are four cases. In each case give a linear-time algorithm for
updating the tree.

(a) e 6∈ E′ and ŵ(e) > w(e).
(b) e 6∈ E′ and ŵ(e) < w(e).
(c) e ∈ E′ and ŵ(e) < w(e).
(d) e ∈ E′ and ŵ(e) > w(e).

5.23. Sometimes we want light spanning trees with certain special properties. Here’s an example.
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Input: Undirected graph G = (V,E); edge weights we; subset of vertices U ⊂ V
Output: The lightest spanning tree in which the nodes of U are leaves (there might be
other leaves in this tree as well).

(The answer isn’t necessarily a minimum spanning tree.)
Give an algorithm for this problem which runs in O(|E| log |V |) time. (Hint: When you remove
nodes U from the optimal solution, what is left?)

5.24. A binary counter of unspecified length supports two operations: increment (which increases its
value by one) and reset (which sets its value back to zero). Show that, starting from an initially
zero counter, any sequence of n increment and reset operations takes time O(n); that is, the
amortized time per operation is O(1).

5.25. Here’s a problem that occurs in automatic program analysis. For a set of variables x1, . . . , xn,
you are given some equality constraints, of the form “xi = xj” and some disequality constraints,
of the form “xi 6= xj .” Is it possible to satisfy all of them?
For instance, the constraints

x1 = x2, x2 = x3, x3 = x4, x1 6= x4

cannot be satisfied. Give an efficient algorithm that takes as inputm constraints over n variables
and decides whether the constraints can be satisfied.

5.26. Graphs with prescribed degree sequences. Given a list of n positive integers d1, d2, . . . , dn, we want
to efficiently determine whether there exists an undirected graph G = (V,E) whose nodes have
degrees precisely d1, d2, . . . , dn. That is, if V = {v1, . . . , vn}, then the degree of vi should be exactly
di. We call (d1, . . . , dn) the degree sequence ofG. This graphG should not contain self-loops (edges
with both endpoints equal to the same node) or multiple edges between the same pair of nodes.

(a) Give an example of d1, d2, d3, d4 where all the di ≤ 3 and d1 + d2 + d3 + d4 is even, but for
which no graph with degree sequence (d1, d2, d3, d4) exists.

(b) Suppose that d1 ≥ d2 ≥ · · · ≥ dn and that there exists a graph G = (V,E) with degree
sequence (d1, . . . , dn). We want to show that there must exist a graph that has this degree
sequence and where in addition the neighbors of v1 are v2, v3, . . . , vd1+1. The idea is to
gradually transform G into a graph with the desired additional property.

i. Suppose the neighbors of v1 in G are not v2, v3, . . . , vd1+1. Show that there exists i <
j ≤ n and u ∈ V such that {v1, vi}, {u, vj} /∈ E and {v1, vj}, {u, vi} ∈ E.

ii. Specify the changes you would make to G to obtain a new graph G′ = (V,E′) with the
same degree sequence as G and where (v1, vi) ∈ E′.

iii. Now show that there must be a graph with the given degree sequence but in which v1

has neighbors v2, v3, . . . , vd1+1.
(c) Using the result from part (b), describe an algorithm that on input d1, . . . , dn (not necessar-

ily sorted) decides whether there exists a graph with this degree sequence. Your algorithm
should run in time polynomial in n and in m =

∑n
i=1 di.

5.27. Alice wants to throw a party and is deciding whom to call. She has n people to choose from, and
she has made up a list of which pairs of these people know each other. She wants to pick as many
people as possible, subject to two constraints: at the party, each person should have at least five
other people whom they know and five other people whom they don’t know.
Give an efficient algorithm that takes as input the list of n people and the list of pairs who know
each other and outputs the best choice of party invitees. Give the running time in terms of n.
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5.28. A prefix-free encoding of a finite alphabet Γ assigns each symbol in Γ a binary codeword, such
that no codeword is a prefix of another codeword.
Show that such an encoding can be represented by a full binary tree in which each leaf corre-
sponds to a unique element of Γ, whose codeword is generated by the path from the root to that
leaf (interpreting a left branch as 0 and a right branch as 1).

5.29. Ternary Huffman. Trimedia Disks Inc. has developed “ternary” hard disks. Each cell on a disk
can now store values 0, 1, or 2 (instead of just 0 or 1). To take advantage of this new technology,
provide a modified Huffman algorithm for compressing sequences of characters from an alpha-
bet of size n, where the characters occur with known frequencies f1, f2, . . . , fn. Your algorithm
should encode each character with a variable-length codeword over the values 0, 1, 2 such that no
codeword is a prefix of another codeword and so as to obtain the maximum possible compression.
Prove that your algorithm is correct.

5.30. The basic intuition behind Huffman’s algorithm, that frequent blocks should have short en-
codings and infrequent blocks should have long encodings, is also at work in English, where
typical words like I, you, is, and, to, from, and so on are short, and rarely used words like
velociraptor are longer.
However, words like fire!, help!, and run! are short not because they are frequent, but
perhaps because time is precious in situations where they are used.
To make things theoretical, suppose we have a file composed of m different words, with frequen-
cies f1, . . . , fm. Suppose also that for the ith word, the cost per bit of encoding is ci. Thus, if we
find a prefix-free code where the ith word has a codeword of length li, then the total cost of the
encoding will be

∑
i fi · ci · li.

Show how to modify Huffman’s algorithm to find the prefix-free encoding of minimum total cost.
5.31. A server has n customers waiting to be served. The service time required by each customer is

known in advance: it is ti minutes for customer i. So if, for example, the customers are served in
order of increasing i, then the ith customer has to wait

∑i
j=1 tj minutes.

We wish to minimize the total waiting time

T =

n∑

i=1

(time spent waiting by customer i).

Give an efficient algorithm for computing the optimal order in which to process the customers.
5.32. Show how to implement the stingy algorithm for Horn formula satisfiability (Section 5.3) in time

that is linear in the length of the formula (the number of occurrences of literals in it). (Hint: Use
a directed graph, with one node per variable, to represent the implications.)

5.33. Show that for any integer n that is a power of 2, there is an instance of the set cover problem
(Section 5.4) with the following properties:

i. There are n elements in the base set.
ii. The optimal cover uses just two sets.

iii. The greedy algorithm picks at least logn sets.

Thus the approximation ratio we derived in the chapter is tight.
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