# ( $C$ não pore crescer $c / n$ <br> $f(n) \in \theta(g(n)) \Leftrightarrow \Leftrightarrow f(n) \in O(g(n)) E f(n) \in \Omega(g(n)) \subset \bar{m}$ pode dimininic $c \mid n n^{n \rightarrow+\infty} \overline{g(n)}$ <br> Exercises $f(n) \in \Omega(g(n)) \leftrightarrow \nexists c>\theta_{e} n_{0} \geqslant 0(f(n) \geqslant c g(n)) \Longleftrightarrow \lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)} \geqslant \theta>\theta$ 

0.1. In each of the following situations, indicate whether $f=O(g)$, or $f=\Omega(g)$, or both (in which case $f=\Theta(g)$ ).

## $e \pi \Omega$

$f(n) \quad g(n) \quad \int f(n)=\theta(g(n))$ pass $n$ é $\theta$ turns de maior arden
(a) $\frac{n}{n^{1}}$
(c) $100 n+\log n$
(d) $n \log n$
(e) $\quad \log 2 n$
(f) $\quad 10 \log n$


(g) $\frac{n^{1.01}}{n^{2} / \log n} \frac{n \log ^{2} n}{n(\log n)^{2}}{ }^{\prime \prime} \geqslant n^{2-\varepsilon} \quad " \leqslant$ n $n^{1+\epsilon}, p / \in>0$ mas $\in \ll 1$

(i) $n^{0.1}$
(j) $(\log n)^{\log n}$
$(\log n)^{10}=$ derives a $\log \overline{9} 010 x$
$\left.n / \log n-\log _{n}\right)^{\log n} \geqslant b^{\log _{6} n}=n>n / \log n$
$(\log n)^{3}$
$5^{\log _{2} n}>4^{\log _{2} n}=2^{2 \log _{2}^{n}}=\left(2^{\log _{2} n}\right)^{2}=n^{2}$
(k) $\sqrt{n}=n^{1 / 2}$
(l) $n^{1 / 2}$
$3^{3^{n+1}=2.2^{n}}$ expencial a/meior bass cresce mans sapid-
(n) $n 2^{n}$
$2^{n}$
$\Omega \Theta-$
(o) $n$ !
$\theta$
(p) $(\log n)^{\log n}$
$2^{\left(\log _{2} n\right)^{2}}=2^{\log _{2} n \cdot \log _{2} n}=n^{\log _{2} n} \quad \Gamma \geqslant \frac{n}{2}$
(q) $\sum_{i=1}^{n} i^{k}$
$n^{k+1}=n^{k}+(n-1)^{k}+(n-2)^{k}+\ldots+t^{k} \leqslant n \cdot n^{k}=n^{k+1}$
0.2. Show that, if $c$ is a positive real number, then $g(n)=1+c+c^{2}+\cdots+c^{n}$ is:
(a) $\Theta(1)$ if $c<1$.
(b) $\Theta(n)$ if $c=1$.
(c) $\Theta\left(c^{n}\right)$ if $c>1$.

The moral: in big- $\Theta$ terms, the sum of a geometric series is simply the first term if the series is strictly decreasing, the last term if the series is strictly increasing, or the number of terms if the series is unchanging.
0.3. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$, are defined by the rule

$$
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} .
$$

In this problem we will confirm that this sequence grows exponentially fast and obtain some bounds on its growth.
(a) Use induction to prove that $F_{n} \geq 2^{0.5 n}$ for $n \geq 6$.
(b) Find a constant $c<1$ such that $F_{n} \leq 2^{c n}$ for all $n \geq 0$. Show that your answer is correct.
(c) What is the largest $c$ you can find for which $F_{n}=\Omega\left(2^{c n}\right)$ ?
0.4. Is there a faster way to compute the $n$th Fibonacci number than by fib (page 13)? One idea involves matrices.
We start by writing the equations $F_{1}=F_{1}$ and $F_{2}=F_{0}+F_{1}$ in matrix notation:

$$
\binom{F_{1}}{F_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \cdot\binom{F_{0}}{F_{1}} .
$$

Similarly,

$$
\binom{F_{2}}{F_{3}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \cdot\binom{F_{1}}{F_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{2} \cdot\binom{F_{0}}{F_{1}}
$$

b) $f(n)=n^{1 / 2} \quad g(n)=n^{3 / 2}$
$f(n)=n=g(n)=n^{2 / 2}$
$n^{1 / 2}=n^{3 / 6}=n^{3 / 6} n^{1 / 6}=n^{4 / 6} \frac{1 n^{2 / 3}}{n>1}$
$\left.f^{\prime}(n)^{+} \leqslant c^{+} g(n)^{+} p\right)+c-1$ e $n_{0}^{+}=1^{+} \Rightarrow f(n) \in e^{+} O(g(n))$

+ Por ablyndo $f^{\prime}(n) \geqslant c^{+} g(n)+p / n \geqslant n_{0}^{+}$
$n^{1 / 2} \geqslant c n^{2 / 3} \Rightarrow D\left[c \leq \frac{n^{1 / 2}}{n^{2 / 3}}=+\frac{n^{3 / 6}}{n^{4 / 6}}=\frac{n^{3 / 6}}{n^{1 / 6} \cdot n^{3 / 6}}=1 / n^{1 / 6}\right]$
${ }^{+} \operatorname{con} \theta^{+} c<1 / m^{+} /\left.6\right|^{+} /+n \geqslant n_{0}^{+} \Rightarrow b^{+} c>\theta^{+}, \log ^{+} \theta^{+} f(n) \not \ell^{+} \Omega^{+}\left(g^{+}(n)\right)$
c) $f(n)=100 n+\log ^{+} n+{ }^{+}(n)=n+(\log n)^{+}+{ }^{+}+\log _{0}^{+} n\left(\log _{0}^{+} n\right)^{2}$ $\left.100 n^{+}+\log ^{+} n^{+} \leqslant 101 n \leqslant 101(n+\log n)^{2}\right)^{+}$ $f(n) \leq c g(n), p / c=101+\theta+n_{0}=0 \Rightarrow f(n) \in O(g(n)){ }^{8}$
$10_{n}+\log n \geqslant 2 n \geqslant\left(\begin{array}{l}\left(n+\left(\log _{n} n\right)^{2}\right) \\ \bigcup_{n} \geqslant 32\end{array}\right.$
$f(n) \geqslant c g(n), p / c=1$ e $n_{0}=32 \Rightarrow f(n) \in \Omega(g(n))$
g) $f(m)=n^{1+e^{+}+1, p / \epsilon>\theta} \quad g(n)=n \log n$
$f(n) \in \Omega(g(n)) \Leftrightarrow \exists c>\theta, n_{0} \geqslant \theta\left(f(n) \geqslant c g(n), p / n \geqslant n_{0}\right) \Leftrightarrow \Rightarrow \lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}>0$

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \frac{n^{n+c}+\log ^{2} n}{n}=\lim _{n \rightarrow+\infty} \frac{n^{\epsilon}}{\log ^{2} n}=\lim _{n \rightarrow+\infty} \frac{\epsilon \cdot n^{\epsilon-1}}{(2 \ln b)^{-} \cdot \frac{\log n}{n}}  \tag{1}\\
& =\frac{e^{+} \ln b}{2} \lim _{n \rightarrow+\infty}^{+} \frac{n^{e^{+}} n^{-1}}{\log _{b}^{n}} \cdot x \\
& =\frac{e \cdot \ln b \lim _{n \rightarrow+\infty}}{2} \frac{\epsilon n^{e-1}}{\ln b(1 / n)}=\lim _{n \rightarrow+\infty} n^{e} \cdot x^{+} \cdot x_{1}^{+}=+\infty \\
& 2 \log n \cdot \frac{1}{\ln b n+}+\frac{2}{\ln b+}+\underline{\log _{n} n} \\
& \frac{d^{+} n^{\epsilon}}{d n^{*}}=\epsilon^{+n^{e-1}} \\
& \frac{d \log ^{2} n}{d \log _{n} n} \cdot \frac{d \log _{b} n}{d n} \\
& \text { dervinado } \\
& \frac{\epsilon \cdot \ln b^{+}}{2} \lim _{n \rightarrow+\infty} \frac{\epsilon_{n} \cdot n^{e-1}}{\ln b \cdot(1 / n)} \cong n_{n \rightarrow+\infty}^{+} \lim ^{e} \cdot x^{-+} \cdot x^{+}=+\infty
\end{align*}
$$



COTe que mostranos que qualquer polinòmio de expsente positivo
Lcresce asintoticamante mais rápido que a funcao log n
$\left.{ }^{+} m\right)^{+} f^{+}(n)^{+}={ }^{+} n^{+} 2^{n+}+g^{+}(n)=3^{+}$


$\sqrt{\lim _{n \rightarrow+\infty} \frac{n \cdot 2^{n}}{3^{n}}}=\lim _{n \rightarrow+\infty} \frac{n \cdot z^{n}}{2^{r} \cdot(3 / 2)^{m}}+\lim _{n \rightarrow+\infty}^{+\infty} \frac{n}{(3 / 2)^{n}}+\lim _{n \rightarrow+\infty}^{+} \frac{1}{\ln ^{n}(3) \cdot(3 / 2)^{n}}+\left[\frac{d n}{d n}=1\right]$

## $\theta$

$\lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}=0^{+}<c^{+} \Rightarrow f(n) \in O(g(n))$
$\lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}=e^{+}<c^{+} \Rightarrow f^{+}(n) \notin \Omega(g(n))$
, $\theta$ ) $f(n)=n!^{+}+g^{+}(n)=2^{n+}+m \geqslant 1$

$f(n) \in \Omega(g(n))+p^{+} C=\frac{1}{2}+n_{0}^{+}=1$
Por atsindo, super qua $\exists^{+} c^{+}>e^{+}$eno $n_{0}^{+} \geq 0$

$$
\begin{aligned}
& \geqslant 2^{2 n-6}=2^{n} \cdot 2^{n-6} \Rightarrow D_{0} \geqslant 2^{m, 6}, p / n>n_{0}
\end{aligned}
$$


q) $f^{+}(n)=\sum_{i=1}^{n+} i^{k}+g^{+}(n)=n^{+k+1}$
$\sum_{i=1}^{n} i^{k}=n^{n^{k}+(n-1)^{k}+(n-2)^{k}+(n-3)^{k}+\cdots+3^{k}+2^{k}+1^{k}}$ and
$\left.\equiv n^{k}+n^{k}+n^{k}+n^{k}+\ldots+n^{k}+n^{k}+n^{n}=m . n^{k}=n^{n+1}\right]$
$f(n)^{+} \in O\left(g^{+}(n)\right)^{+} \rho / c^{+}=1_{l}^{+}+n_{0}^{+}=1$
$\sum_{i=1}^{n} i^{k}=n^{n}+(n-1)^{n}+(n-2)^{n+}+\ldots+\left(n-\frac{n}{2}+1\right)^{k}+\left(n=\frac{n}{2}\right)^{k}+\ldots+2^{k}+1^{k}$

$$
\begin{aligned}
& \\
& \geq\left(\frac{n}{2}\right)^{k+}+\left(\frac{n}{2}\right)^{n}+\left(\frac{n}{2}\right)^{k}+\cdots+\left(\frac{n}{2}\right)^{n}=\frac{n}{2} \frac{n}{}_{2^{k}}^{k}=\left(\frac{1}{2^{k+1}}\right)^{n^{k+1}}
\end{aligned}
$$

$f^{+}(n) \in \Omega^{+}(g(n))^{+}+p^{+}+c=\frac{1^{+}}{2^{n+1}}{ }^{+} n_{0}^{+}=2$
and in general

$$
\binom{F_{n}}{F_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right)^{n} \cdot\binom{F_{0}}{F_{1}} .
$$

So, in order to compute $F_{n}$, it suffices to raise this $2 \times 2$ matrix, call it $X$, to the $n$th power.
(a) Show that two $2 \times 2$ matrices can be multiplied using 4 additions and 8 multiplications.

But how many matrix multiplications does it take to compute $X^{n}$ ?
(b) Show that $O(\log n)$ matrix multiplications suffice for computing $X^{n}$. (Hint:Think about computing $X^{8}$.)

Thus the number of arithmetic operations needed by our matrix-based algorithm, call it $f i b 3$, is just $O(\log n)$, as compared to $O(n)$ for fib2. Have we broken another exponential barrier?
The catch is that our new algorithm involves multiplication, not just addition; and multiplications of large numbers are slower than additions. We have already seen that, when the complexity of arithmetic operations is taken into account, the running time of fib2 becomes $O\left(n^{2}\right)$.
(c) Show that all intermediate results of fib3 are $O(n)$ bits long.
(d) Let $M(n)$ be the running time of an algorithm for multiplying $n$-bit numbers, and assume that $M(n)=O\left(n^{2}\right)$ (the school method for multiplication, recalled in Chapter 1, achieves this). Prove that the running time of fib3 is $O(M(n) \log n)$.
(e) Can you prove that the running time of fib3 is $O(M(n))$ ? (Hint: The lengths of the numbers being multiplied get doubled with every squaring.)

In conclusion, whether fib3 is faster than fib2 depends on whether we can multiply $n$-bit integers faster than $O\left(n^{2}\right)$. Do you think this is possible? (The answer is in Chapter 2.)
Finally, there is a formula for the Fibonacci numbers:

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

So, it would appear that we only need to raise a couple of numbers to the $n$th power in order to compute $F_{n}$. The problem is that these numbers are irrational, and computing them to sufficient accuracy is nontrivial. In fact, our matrix method fib3 can be seen as a roundabout way of raising these irrational numbers to the $n$th power. If you know your linear algebra, you should see why. (Hint: What are the eigenvalues of the matrix $X$ ?)

